GUAN Bo-wen,CHEN Qing-shan,WU Xiao-xia,et al.Application Progress of Genome-wide Association Analysis on Soybean Genetic Breeding[J].HEILONGJIANG AGRICULTURAL SCIENCES,2022,(04):94-99.[doi:10.11942/j.issn1002-2767.2022.04.0094]
大豆遗传育种中全基因组关联分析的应用进展
- Title:
- Application Progress of Genome-wide Association Analysis on Soybean Genetic Breeding
- Keywords:
- soybean; genome-wide association analysis; genetic breading; character improvement; application progress
- 文献标志码:
- A
- 摘要:
- 目前我国缺少高产优质的大豆品种,需加大研发力度。全基因组关联分析(GWAS)具有高通量、高精度和费时少等显著优点。为促进GWAS在大豆遗传和育种过程中的应用,本文在介绍GWAS方法的基础上,总结其在大豆各主要农艺特性的遗传改良和育种工作中的应用进展,并对GWAS的优缺点和其发展趋势等问题进行讨论,并提出解决方法。
- Abstract:
- At present,there is a lack of high-yield and high-quality soybean varieties in China,so we need to strengthen research and development.Genome wide association analysis(GWAS)has the advantages of high throughput,high precision and less time-consuming.In order to promote the application of GWAS in the process of soybean genetics and breeding,based on the introduction of the theory of GWAS method,this paper summarized its application progress in the genetics and breeding of main agronomic characteristics of soybean,discussed the advantages and disadvantages of GWAS and its development trend,and put forward solutions.
参考文献/References:
[1]ZHAO X,DONG H R,CHANG H,et al.Genome wide association mapping and candidate gene analysis for hundred seed weight in soybean Glycine max(L.)Merrill[J].BMC Genomics,2019,20(1):648.
[2]ZHANG X L,DING W T,XUE D,et al.Genome-wide association studies of plant architecture-related traits and 100-seed weight in soybean landraces[J].BMC Genomic Data,2021,22(1):10.
[3]Humberto A G,Benjamin W,Braulio S C,et al.Association mapping of seed quality traits in Brassica napus L.using GWAS and candidate QTL approaches[J].Molecular Breeding,2015,35(6):143.
[4]Gaut B S,Long A D.The lowdown on linkage disequilibrium[J].Plant Cell,2003,15(7):1502-1506.
[5]刘红占,王俊生,胡利宗,等.全基因组关联分析在油菜遗传育种中的应用和研究进展[J].分子植物育种,2018,16(8):2563-2570.
[6]谈静,郭俊杰,曾杰.多倍体植物复杂性状全基因组关联分析研究进展[J].分子植物育种,2020,18(4):1282-1289.
[7]李廷雨,黎永力,甘卓然,等.全基因组关联分析在大豆中的研究进展[J].大豆科学,2020,39(3):479-484.
[8]FLINT-GARCIA S A,Thuillet A C,YU J,et al.Maize association population:A high-resolution platform for quantitative trait locus dissection[J].The Plant Journal,2005,44(6):1054-1064.
[9]万何平,陈禅友,陈高,等.全基因组关联分析在大豆遗传学上的研究进展[J].江汉大学学报(自然科学版),47(3):197-203.
[10]ZHANG S S,HAO D R,ZHANG S Y,et al.Genome-wide association mapping for protein,oil and water-soluble protein contents in soybean[J].Molecular Genetics and Genomics,2021,296(1):91-102.
[11]ZHANG K X,LIU S L,LI W B,et al.Identification of QTNs controlling seed protein content in soybean using multi-locus genome-wide association studies[J/OL].Frontiers in Plant Science,2018,9[2021-09-10].https://www.researchgate.net/publication/329091396_Identification_of_QTNs_Controlling_Seed_Protein_Content_in_Soybean_Using_Multi-Locus_Genome-Wide_Association_Studies.DOI:10.3389/FPLS.2018.01690.
[12]HWANG E Y,SONG Q J,JIA G F,et al.A genome-wide association study of seed protein and oil content in soybean[J].BMC Genomics,2014,15:1-12.
[13]DIAS D A,POLO L R T,LAZZARI F,et al.Genome-wide association for mapping QTLs linked to protein and oil contents in soybean[J].Pesquisa Agropecuaria Brasileira,2017,52(10):896-904.
[14]YAN L,DI R,WU C J,et al.Haplotype analysis of a major and stable QTL underlying soybean(Glycine max) seed oil content reveals footprint of artificial selection[J].Molecular Breeding,2019,39(4):57.
[15]LIU X Y,QIN D,PIERSANTI A,et al.Genome-wide association study identifies candidate genes related to oleic acid content in soybean seeds[J].BMC Plant Biology,2020,20(1):399.
[16]LIU J Y,LI P,ZHANG Y W,et al.Three-dimensional genetic networks among seed oil-related traits,metabolites and genes reveal the genetic foundations of oil synthesis in soybean[J].Plant Journal,2020,103(3):1103-1124.
[17]LI X Y,ZHANG K X,SUN X,et al.Detection of QTL and QTN and candidate genes for oil content in soybean using a combination of four-way-RIL and germplasm populations[J].Crop Journal,2020,8(5):802-811.
[18]FANG C,MA Y M,WU S W,et al.Genome-wide association studies dissect the genetic networks underlying agronomical traits in soybean[J].Genome Biology,2017,18:161.
[19]SHIM S,HA J,KIM M Y,et al.GmBRC1 is a candidate gene for branching in soybean[Glycine max(L.) Merrill][J].International Journal of Molecular Sciences,2019,20(1):135.
[20]L H Y,LI H W,FAN R,et al.Genome-wide association study of dynamic developmental plant height in soybean[J].Canadian Journal of Plant Science,2017,97(2):308-315.
[21]BORASH J,SINGODE A,TALUKDAR A,et al.Genome-wide association studies (GWAS) reveal candidate genes for plant height and number of primary branches in soybean Glycine max(L.)Merrill[J].Indian Journal of Genetics and Plant Breeding,2018,78(4):460-469.
[22]IKRAM M,HAN X,ZUO J F,et al.Identification of QTNs and their candidate genes for 100-seed weight in soybean(Glycine max L.)Using Multi-Locus Genome-Wide Association studies[J].Genes,2020,11(7):714.
[23]QI Z Y,SONG J,ZHANG K X,et al.Identification of QTNs controlling 100-seed weight in soybean using multilocus genome-wide association studies[J/OL].Frontiers in Genetics,2020,11[2021-09-10].https://www.researchgate.net/publication/342985970_Identification_of_QTNs_Controlling_100-Seed_Weight_in_Soybean_Using_Multilocus_Genome-Wide_Association_Studies.DOI:10.3389/fgene.2020.00689.
[24]SONG J,SUN X,ZHANG K X,et al.Identification of QTL and genes for pod number in soybean by linkage analysis and genome-wide association studies[J/OL].Molecular Breeding,2020,40(6)[20210910].https://www.researchgate.net/publication/343787918_Identification_of_QTL_and_genes_for_pod_number_in_soybean_by_linkage_analysis_and_genome-wide_association_studies.DOI:10.1007/s11032-020-01140-w.
[25]ZUO Q M,HOU J F,B.Zhou,et al.Identification of QTLs for growth period traits in soybean using association analysis and linkage mapping[J].Plant Breeding,2013,132(3):317-323.
[26]ZHOU L,WANG S B,JIAN J B,et al.Identification of domestication-related loci associated with flowering time and seed size in soybean with the RAD-seq genotyping method[J].Scientific Reports,2015,5:9350.
[27]ZHANG D,CHENG H,HU Z B,et al.Fine mapping of a major flowering time QTL on soybean chromosome 6 combining linkage and association analysis[J].Euphytica,2013,191(1):23-33.
[28]LIU Z X,LI H H,FAN X H,et al.Phenotypic characterization and genetic dissection of growth period traits in soybean(Glycine max)using association mapping[J/OL].PLoS One,2016,11(7)[2021-09-10].https://pubmed.ncbi.nlm.nih.gov/27367048/.DOI:10.1371/JOURNAL.PONE.0158602.
[29]LI C,LI Y H,LI Y F,et al.A domestication-associated gene GmPRR3b regulates the circadian clock and flowering time in soybean[J].Molecular Plant,2020,13(5):745-759.
[30]ZHAO X,BAO D F,WANG W,et al.Loci and candidate gene identification for soybean resistance to Phytophthora root rot race 1 in combination with association and linkage mapping[J].Molecular Breeding,2020,40(10):100.
[31]ROLLING W,LAKE R,DORRANCE A E,et al.Genome-wide association analyses of quantitative disease resistance in diverse sets of soybean Glycine max(L.) Merr.plant introductions[J].Plos One,2020,15(3):E0227710.
[32]LAI M C,LAI Z Y,JHAN L,et al.Prioritization and evaluation of flooding tolerance genes in soybean Glycine max(L.) Merr.[J/OL].Frontiers in Genetics,2021,11[2021-09-10].https://www.researchgate.net/publication/348810439_Prioritization_and_Evaluation_of_Flooding_Tolerance_Genes_in_Soybean_Glycine_max_L_Merr.DOI:10.3389/FGENE.2020.612131.
[33]ZHANG H Y,LI C Y,DAVIS E L,et al.Genome-wide association study of resistance to soybean cyst nematode(Heterodera glycines)HG Type 2.5.7 in wild soybean(Glycine soja)[J].Frontiers in Plant Science,2016,7:1214.
[34]ZENG A,CHEN P,KORTH K,et al.Genome-wide association study(GWAS) of salt tolerance in worldwide soybean germplasm lines[J/OL].Molecular Breeding,2017,37(3)[2021-09-10].https://www.researchgate.net/publication/314241315_Genome-wide_association_study_GWAS_of_salt_tolerance_in_worldwide_soybean_germplasm_lines.DOI:10.1007/S11032-017-0634-8.
[35]WU C J,MOZZONI L A,MOSELEY D,et al.Genome-wide association mapping of flooding tolerance in soybean[J/OL].Molecular Breeding,2019,40(1)[2021-09-10].https://www.researchgate.net/profile/Evangelina-Ella/publication/272623796_Genome-wide_association_mapping_of_tolerance_of_flooding_during_germination_in_rice/links/54eac8220cf27a6de114d144/Genome-wide-association-mapping-of-tolerance-of-flooding-during-germination-in-rice.pdf.DOI:10.13140/2.1.1663.3125.
[36]WEN Z X,TAN R J,ZHANG S C,et al.Integrating GWAS and gene expression data for functional characterization of resistance to white mould in soya bean[J].Plant Biotechnology Journal,2018,16(11):1825-1835.
[37]GUPTA P K,KULWAL P L,JAISWAL V.Association mapping in plants in the post-GWAS genomics era[J].Advances in Genetics,2019,104:75-154.
[38]CHAUDHARY J,Patil G B,Sonah H,et al.Expanding omics resources for improvement of soybean seed composition traits[J].Frontiers in Plant Science,2015,6:1021.
[39]郝兴杰,胡林,张淑君.全基因组关联分析方法的研究进展[J].畜牧兽医学报,2016 47(2):213-217.
相似文献/References:
[1]吕静,韩莉梅,张所有.超氧化物歧化酶模拟物(SODM)对大豆保护酶系统的影响[J].黑龙江农业科学,2013,(01):23.
LYUJing,HANLi-mei,ZHANGSuo-you.EffectsofSuperoxideDismutaseMimics(SODM)onSoybeanProtectiveEnzymeSystem[J].HEILONGJIANG AGRICULTURAL SCIENCES,2013,(04):23.
[2]吴俊彦,于晓光.黑河地区灾后补种大豆品种筛选试验[J].黑龙江农业科学,2014,(07):13.
WU Jun yan,YU Xiao guang.Soybean Varieties Screening Test for Reseeding in Heihe Region after Disaster[J].HEILONGJIANG AGRICULTURAL SCIENCES,2014,(04):13.
[3]安咏梅,王家军,李进荣,等.大豆抗胞囊线虫的分子标记研究[J].黑龙江农业科学,2014,(07):15.
AN Yong mei,WANG Jia jun,LI Jin rong,et al.Molecular Marker Assisted Selection on Soybean Resistant to Soybean Cyst Nematode[J].HEILONGJIANG AGRICULTURAL SCIENCES,2014,(04):15.
[4]刘兴龙,王克勤,朱立新,等.大豆蚜对大豆阶段性危害研究[J].黑龙江农业科学,2014,(06):57.
LIU Xinglong,WANG Keqin,ZHU Lixin,et al.Study on Effect of Soybean Aphid on Soybean Growth at Different Stages[J].HEILONGJIANG AGRICULTURAL SCIENCES,2014,(04):57.
[5]赵 寅.富裕县大豆生产现状及发展建议[J].黑龙江农业科学,2014,(05):150.
ZHAO Yin.Production Situation and Suggestions of Soybean in Fuyu County[J].HEILONGJIANG AGRICULTURAL SCIENCES,2014,(04):150.
[6]郑 旭,赵秀梅,王连霞,等.25%阿维〖DK1〗·福〖DK1〗·莠锈悬浮种衣剂病害防效试验[J].黑龙江农业科学,2014,(05):54.
ZHENG Xu,ZHAO Xiu-mei,WANG Lian-xia,et al.Field Efficacy Trial of 25% Abamectin·Thiram·Carboxin FSC Against Soybean Disease[J].HEILONGJIANG AGRICULTURAL SCIENCES,2014,(04):54.
[7]袁明. 齐齐哈尔大豆综合试验站现代农业产业示范基地建设成效的探讨[J].黑龙江农业科学,2013,(01):143.
YUANMing.DiscussiononConstructionEffectofQiqiharSoybeanComprehensiveExperimentalStationofModernAgriculturalIndustrializationDemonstrationBase[J].HEILONGJIANG AGRICULTURAL SCIENCES,2013,(04):143.
[8]李亮,李泽宇,王丽娜,等.不同大豆品种耐盐性表现分析[J].黑龙江农业科学,2013,(02):17.
LI Liang,LI Ze-yu,WANG Li-na,et al.Performance Analysis on Salt Tolerance for Different Soybean Varieties[J].HEILONGJIANG AGRICULTURAL SCIENCES,2013,(04):17.
[9]郑新利,张丙双,寇贺.东北地区大豆生产主要问题及发展对策[J].黑龙江农业科学,2012,(02):146.
ZHENG Xin-li,ZHANG Bing-shuang,KOU He.Main Problems and Developing Countermeasuresof Soybean in Northeast China[J].HEILONGJIANG AGRICULTURAL SCIENCES,2012,(04):146.
[10]孙羽,冯延江,王麒,等.玉米茬原垄卡种大豆对其生长及产量的影响[J].黑龙江农业科学,2014,(03):26.
SUN Yu,FENG Yan jiang,WANG Qi,et al.Effect of Original Ridge Tillage on the Growth and Yield of Soybean[J].HEILONGJIANG AGRICULTURAL SCIENCES,2014,(04):26.
备注/Memo
收稿日期:2021-10-10
基金项目:国家自然科学基金区域创新发展联合基金(U20A20271004394)。
第一作者:关博文(1997-),男,硕士研究生,从事大豆遗传育种及生物技术应用研究。E-mail:563134240@qq.com。
通信作者:杨学(1969-),男,硕士,研究员,从事大豆抗病育种研究。E-mail:yxflax@126.com。