ZHOU Chang-jun.Comprehensive Traits Evaluation and Analysis of Interaction with Environment of the New Maize Varieties Consortium Test in Heilongjiang Province[J].HEILONGJIANG AGRICULTURAL SCIENCES,2021,(11):1-7.[doi:10.11942/j.issn1002-2767.2021.11.0001]
黑龙江省联合体试验玉米新品种综合性状评价及与环境互作的分析
- Title:
- Comprehensive Traits Evaluation and Analysis of Interaction with Environment of the New Maize Varieties Consortium Test in Heilongjiang Province
- Keywords:
- AMMI model; grey correlation degree; stability; discrimination; principal component analysis
- 文献标志码:
- A
- 摘要:
- 为了探究联合体试验玉米新品种性状在不同分析模型下的表现规律,并作出客观合理的综合性评价,本文采用AMMI模型、灰色关联度及主成分分析法对15个玉米品种(系)的14个性状进行综合分析。结果表明:玉米产量基因型与环境互作主成分IPCA1、IPCA2、IPCA3累计占比90.49%的互作效应,说明AMMI模型比较透彻地分析了基因型与环境互作信息;在品种稳定性Di及试点鉴别力参数Dj分析中,品种G1、G3属于高产稳产型品种,G15为低产稳产品种,试点E2、E1、E5对品种的分辨力较强;通过品种×地点互作两项表中得出品种G1、G3、G15适应性及稳定性好。综上,结合品种田间产量表现及差异显著性,AMMI分析科学反映加性遗传模型的交互效应,灰色关联度及主成分分析品种多性状比较的优势分析认为,灰色综合评判值Gi分别为0.757 4和0.716 0,主成分综合得分为0.62和0.58的品种G1、G3,综合性状良好具有可靠的高产、稳定及适应性。G15在各分析方法中排名较低,表示其综合性状差,为低产稳产品种。
- Abstract:
- In order to explore the performance rules of the new maize varieties traits in different analysis models,and make objective and reasonable comprehensive evaluation,this paper used AMMI model,grey correlation degree and principal component analysis to analyze the 14 traits of 15 maize varieties (lines).The results showed that the interaction effect of the principal components IPCA1,IPCA2 and IPCA3 of the interaction between maize yield genotype and environment accounted for 90.49%,indicating that AMMI model analyzed the interaction information between genotype and environment thoroughly; In the analysis of variety stability Di and pilot discrimination parameter Dj,varieties G1 and G3 belonged to high and stable yield varieties,G15 was low and stable yield varieties,and pilot E2,E1 and E5 had strong discrimination to varieties;Through the interaction of varieties and locations,it was concluded that varieties G1,G3 and G15 had good adaptability and stability.In conclusion,AMMI analysis scientifically reflected the interaction effect of additive genetic model in combination with the field yield performance and significant difference of varieties.The grey correlation degree and principal component analysis showed that the grey comprehensive evaluation values Gi were 0.757 4 and 0.716 0 respectively.Varieties G1 and G3 with comprehensive scores of principal components of 0.62 and 0.58 had good comprehensive characters and reliable high yield,stability and adaptability.G15 ranked low in each analysis method,indicating that its comprehensive character was poor,and it was a low yield and stable yield variety.
参考文献/References:
[1]孟静娇,李琰聪,赵毕昆,等.云南保山玉米品种联合体区域试验结果综合分析[J].南方农业学报,2017,48(10):1776-1781.
相似文献/References:
[1]刘 峰.红小豆品种(系)的灰色关联度分析及综合评价[J].黑龙江农业科学,2011,(05):7.
LIU Feng.Grey Correlation DegreeAnalysis and ComprehensiveEvaluation of Adzuki Bean Cultivars (Lines)[J].HEILONGJIANG AGRICULTURAL SCIENCES,2011,(11):7.
[2]闫 锋.黑龙江省晚熟谷子种质资源的灰色关联度分析及综合评价[J].黑龙江农业科学,2010,(07):30.
YAN Feng.Grey Correlation Degree Analysis and Comprehensive Evaluation of Serotinous Millet Germplasm Resources in Heilongjiang Province[J].HEILONGJIANG AGRICULTURAL SCIENCES,2010,(11):30.
[3]王囡囡.掐尖大豆主要性状的灰色关联度分析[J].黑龙江农业科学,2010,(12):17.
WANG Nan-nan.Grey Correlation Degree Analysis on Major Traits of Topping Soybean[J].HEILONGJIANG AGRICULTURAL SCIENCES,2010,(11):17.
[4]闫 锋,崔秀辉,李清泉,等.糜子主要农艺性状的灰色关联度分析[J].黑龙江农业科学,2010,(05):37.
YAN Feng,CUI Xiu-hui,LI Qing-quan,et al.Grey Correlation Degree Analysis of Main Agronomic Character of Broomcorn Millet[J].HEILONGJIANG AGRICULTURAL SCIENCES,2010,(11):37.
[5]张 正,崔宏亮.新疆伊犁河谷亚麻品种(系)的评价与筛选[J].黑龙江农业科学,2009,(03):38.[doi:10.11942/j.isn1002-2767.2009.03.0038]
ZHANGZheng,CUI Hong-liang.Screening and Evaluation for the Flax Varieties in Yili of Xinjiang[J].HEILONGJIANG AGRICULTURAL SCIENCES,2009,(11):38.[doi:10.11942/j.isn1002-2767.2009.03.0038]
[6]周长军.黑龙江省西部大豆植株生物量和产量及产量构成的灰色关联度分析[J].黑龙江农业科学,2020,(07):7.[doi:10.11942/j.issn1002-2767.2020.07.0007]
ZHOU Chang-jun.Grey Correlation Analysis of Biomass,Yield and Yield Components of Soybean Plants in Western Heilongjiang Province[J].HEILONGJIANG AGRICULTURAL SCIENCES,2020,(11):7.[doi:10.11942/j.issn1002-2767.2020.07.0007]
[7]赵平,李学涛,康振友,等.基于熵权的DTOPSIS法和灰色关联度分析法在西瓜品种综合评价中的应用[J].黑龙江农业科学,2021,(01):79.[doi:10.11942/j.issn1002-2767.2021.1.0079]
[J].HEILONGJIANG AGRICULTURAL SCIENCES,2021,(11):79.[doi:10.11942/j.issn1002-2767.2021.1.0079]
[8]周长军,田中艳,吴耀坤,等.不同生态环境抗线虫大豆品种综合性状分析[J].黑龙江农业科学,2022,(06):1.[doi:DOI:10.11942/j.issn1002-2767.2022.06.0001]
ZHOU Chang-jun,TIAN Zhong-yan,WU Yao-kun,et al.Analysis on Comprehensive Traits of Resistant NematodeSoybean Varieties in Different Ecological Environments[J].HEILONGJIANG AGRICULTURAL SCIENCES,2022,(11):1.[doi:DOI:10.11942/j.issn1002-2767.2022.06.0001]
[9]穆兰海,常克勤,杜燕萍,等.AMMI模型和GGE双标图对宁夏不同气候类型区苦荞品种稳产性适应性分析[J].黑龙江农业科学,2024,(02):8.[doi:10.11942/j.issn1002-2767.2024.02.0008]
MU Lanhai,CHANG Keqin,DU Yanping,et al.Analysis of Stable Yield Adaptability of Fagopyrum tataricumVarieties in Different Climate Regions of Ningxia Using AMMI Model and GGE Double Label Map[J].HEILONGJIANG AGRICULTURAL SCIENCES,2024,(11):8.[doi:10.11942/j.issn1002-2767.2024.02.0008]
[10]王贺亚,罗静静,崔瑜,等.基于灰色关联度和主成分分析的塔额盆地甜菜品种的适应性分析[J].黑龙江农业科学,2024,(03):12.[doi:10.11942/j.issn1002-2767.2024.03.0012]
WTHZWANG Heya,LUO Jingjing,CUI Yu,et al.Adaptability of Sugar Beet Varieties in Ta’e Basin Based on Grey Correlation Degree and Principal Component Analysis[J].HEILONGJIANG AGRICULTURAL SCIENCES,2024,(11):12.[doi:10.11942/j.issn1002-2767.2024.03.0012]
备注/Memo
收稿日期:2021-0715