[1]程伦国,朱建强,刘德福,等.涝渍胁迫对大豆产量性状的影响[J].长江大学学报(自科版),2006,3(2): 109-112.
[2]王莹,史振声,王志斌,等.植物对氨基酸的吸收利用及氨基酸在农业中的应用[J].中国土壤与肥料,2008(1): 6-11.
[3]Nasholm T,Ekblad A,Nordin A,et al.Boreal forest plants take up organic nitrogen[J].Nature,1998,392: 914-916.
[4]张夫道,孙羲.氨基酸对水稻营养作用的研究[J].中国农业科学,1984(5): 61-66.
[5]孙敬,侯松嵋,何红波,等.土壤中氨基酸分析方法的研究进展[J].化学研究与应用,2007,19(1): 17-23.
[6]马林.植物对氨基酸的吸收和利用[J].西南科技大学学报,2004,19(1): 102-107.
[7]Werdin P F,Kielland K,Boone R D.Soil amino acid composition across a boreal forest successional sequence[J].Soil Biology Biochemistry,2009,41: 1210-1220.
[8]Raab T K,Lipson D A,Monson R K.Soil amino acid utilization among species of the Cyperaceae: plant and soil processes[J].Ecology,1999,80: 2408-2419.
[9]Kielland K.Landscape patterns of free amino acids in arctic tundra soils[J].Biogeochemistry,1995,31: 85-98.
[10]Raab T K,Lipson D A,Monson R K.Non-mycorrhizal uptake of amino acids by roots of the alpine sedge Kobresia myosuroides:Implications for the alpine nitrogen cycle[J].Oecologia,1996,108: 488-494.
[11]Turnbull M H,Schmidt S,Erskine P D,et al.Root adaptation and nitrogen source acquisition in natural ecosystems[J].Tree Physiology,1996,16: 941-948.
[12]Schmidt S,Stewart G R.Glycine metabolism by plant roots and its occurrence in Australian plant communities[J].Functional Plant Biology,1999,26: 253-260.
[13]Bradley R,Burt A J,Read D J.The biology of mycorrhiza in the Ericaceae[J].New Phytologist,1982,91: 197-209.
[14]Bennett S N,Olson J R,Kershner J L,et al.Propagule pressure and stream characteristics influence introgression: Cutthroat and rainbow trout in British Columbia[J].Ecological Applications,2010,20: 263-277.
[15]hlund J.Organic and inorganic nitrogen sources for conifer seedlings:Abundance,uptake and growth[D].Ume:Swedish University of Agricultural Sciences,2004: 1-38.
[16]Jones D L,Shannon D,Junvee-Fortune T,et al.Plant capture of free amino acids is maximized under high soil amino acid concentrations[J].Soil Biology and Biochemistry,2005,37: 179-181.[17]Zhong Z,Makeschin F.Soluble organic nitrogen in temperate forest soils[J].Soil Biology and Biochemistry,2003,35: 333-338.
[18]Vinolas L C,Vallejo V R,Jones D L.Control of amino acid mineralization and microbial metabolism by temperature[J].Soil Biology and Biochemistry,2001,33(7):1137-1140.
[19]Jones D L,Shannon D,Murphy D V,et al.Role of dissolved organic nitrogen (DON) in soil N cycling in grassland soils[J].Soil Biology and Biochemistry,2004,36: 749-756.
[20]Lipson D A,Raab T K,Schmidt S K,et al.An empirical model of amino acid transformations in an alpine soil[J].Soil Biology and Biochemistry,2001,33:189-198.
[21]许玉兰,刘庆城.用N15示踪方法研究氨基酸的肥效作用[J].氨基酸和生物资源,1998,20(2): 20-23.
[22]Williams L E,Nelson S J,Hall J L.Characterization of solute/proton cotransport in plasma membrane vesicles from Ricinus cotyledons,and a comparison with other tissues[J].Planta,1992,186(4): 541-550.
[23]Fischer W N,André B,Rentsch D,et al.Amino acid transport in plants[J].Trends in Plant Science,1998,3: 188-195.
[24]Fischer W N,Loo D D F,Koch W,et al.Low and high affinity amino acid H+-cotransporters for cellular import of neutral and charged amino acids[J].Plant Journal,2002,29: 717-731.
[25]Su Y H,Frommer W B,Ludewig U.Molecular and functional characterization of a family of amino acid transporters from Arabidopsis[J].Plant Physiology,2004,136: 3104-3113.
[26]张敬敏,桑茂鹏,朱哲,等.植物对氨基酸的吸收研究进展[J].氨基酸和生物资源,2013,35(2):19-22.
[27]Hu G Q,He H B,Zhang W,et al.The transformation and renewal of soil amino acids induced by the availability of extraneous C and N[J].Soil Biology and Biochemistry,2016,96: 86-96.
[28]宋奇超,曹凤秋,巩元勇,等.高等植物氨基酸吸收与转运及生物学功能的研究进展[J].植物营养与肥料学报,2012,18(6): 1507-1517.
[29]颜志明,魏跃,胡德龙,等.盐胁迫下外源脯氨酸对甜瓜幼苗体内K+、Na+、Ca2+、Mg2+ 和Cl-含量及分布的影响[J].江苏农业学报,2014,30(3): 612-618.
[30]颜志明,孙锦,郭世荣.外源脯氨酸对盐胁迫下甜瓜幼苗生长、光合作用和光合荧光参数的影响[J].江苏农业学报,2013,29(5): 1125-1130.
[31]颜志明,冯英娜,韩艳丽,等.外源脯氨酸对盐胁迫下甜瓜脯氨酸代谢的影响[J].西北植物学报,2015,35(10): 2035-2041.
[32]El-samad H M A,Shaddad M A K,Barakat N.Improvement of plants salt tolerance by exogenous application of amino acids[J].Journal of Medicinal Plants Research,2011,5(24): 5692-5699.[33]Cuin T A,Shabala S.Amino acids regulate salinity-induced potassium efflux in barley root epidermis[J].Planta,2007,225: 753-761.
[34]赵宁,徐志然,曲斌,等.外源γ-氨基丁酸对盐碱胁迫下甜瓜种子萌发的影响[J].浙江大学学报,2016,42(1): 40-46.
[35]杨洪兵.氨基酸对盐胁迫荞麦种子萌发及幼苗生长的影响[J].贵州农业科学,2014,42(8): 30-33.
[36]Parvin S,Lee O R,Sathiyaraj G,et al.Spermidine alleviates the growth of saline-stressed ginseng seedlings through antioxidative defense system[J].Gene,2014,537(1):70-78.
[37]Zhang N,Shi X,Guan Z,et al.Treatment with spermidine protects chrysanthemum seedlings against salinity stress damage[J].Plant Physiol Biochem,2016,105: 260-270.
[38]Ximénez-Embún M G,Ortego F,Castaera P.Drought-stressed tomato plants trigger bottom-up effects on the invasive tetranychus evansi[J].PLoS One,2016,11(1):e0145275.
[39]杨善,杨杰文,叶昌辉,等.基于脯氨酸合成积累的甘蔗分蘖期耐旱生理效应分析[J].广东海洋大学学报,2015,35(6):87-93.
[40]赵宏伟,王新鹏,于美芳,等.分蘖期干旱胁迫及复水对水稻抗氧化系统及脯氨酸影响[J].东北农业大学学报,2016,47(2): 1-7.
[41]曹让,梁宗锁,吴洁云,等.干旱胁迫及复水对棉花幼苗根系氮代谢的影响[J].水土保持学报,2012,26(6): 274-280.
[42]张金林,陈托兄,王锁民.阿拉善荒漠区几种抗旱植物游离氨基酸和游离脯氨酸的分布特征[J].中国沙漠,2004,24(4):493-499.
[43]Mwadzingeni L,Shimelis H,Tesfay S,et al.Screening of bread wheat genotypes for drought tolerance using phenotypic and proline analyses[J].Frongtiers in Plant Science,2016,7: 1276.
[44]马兴林,崔震海,陈杰,等.玉米苗期干旱胁迫对子粒粗蛋白质和赖氨酸含量的影响[J].玉米科学,2006,14(2): 71-74.
[45]张怀山,赵桂琴,栗孟飞,等.中型狼尾草幼苗对PEG、低温和盐胁迫的生理应答[J].草业学报,2014,23(2): 180-188.
[46]王淑杰,王家民,李亚东,等.氨基酸种类、含量与葡萄抗寒性关系的研究[J].葡萄栽培与酿酒,1998,2(1): 3-5.
[47]任晓平,张喜春,张楠,等.低温胁迫对番茄幼苗叶片中脯氨酸降解酶的活性及其基因表达量的影响[J].中国农学通报,2012,28(10): 132-135.
[48]Nanjo T,Kobayashi M,Yoshiba Y,et al.Antisense suppression of proline degradation improves tolera-nce to freezing and salinity in Arabidopsis thaliana[J].FEBS Letters,1999,461: 205-210.
[49]陈璇,李金耀,马纪,等.低温胁迫对春小麦和冬小麦叶片游离脯氨酸含量变化的影响[J].新疆农业科学,2007,44(5):553-556.
[50]马月花,郭世荣,杜南山,等.低氧胁迫对黄瓜幼苗生长和形态结构及有关酶活性的影响[J].南京农业大学学报,2016,39(2): 213-219 .
[51]徐春梅,陈丽萍,王丹英,等.低氧胁迫对水稻幼苗根系功能和氮代谢相关酶活性的影响[J].中国农业科学,2016,49(8): 1625-1634.
[52]夏庆平,高洪波,李敬蕊.γ-氨基丁酸(GABA)对低氧胁迫下甜瓜幼苗光合作用和叶绿素荧光参数的影响[J].生态应用学报,2011,22(4): 999-1006.
[53]李敬蕊,杨丽文,王春燕,等.γ-氨基丁酸对低氧胁迫下甜瓜幼苗抗氧化酶活性及表达的影响[J].东北农业大学学报,2014,45(11): 28-36.
[54]宋锁玲,李敬蕊,高洪波,等.γ-氨基丁酸对低氧胁迫下甜瓜幼苗氮代谢及矿质元素含量的影响[J].园艺学报,2012,39(4): 695-704.
[55]Miyashita Y,Good AG.Contribution of the GABA shunt to hypoxia-induced alanine accumulation in roots of Arabidopsis thaliana[J].Plant Cell Physiol,2008,49(1): 92-102.
[56]何小龙,季学军,裴洲洋,等.β-氨基丁酸诱导烟草抗烟草花叶病毒的研究[J].合肥工业大学学报,2015,38(11): 1547-1552.
[57]mür B,Gürsoy Y Z,rnek H,et al.Enhanced systemic resistance to bacterial speck disease caused by Pseudomonas syringae pv.tomato by dl-β-aminobutyric acid under salt stress[J].Physiologia Plantarum,2007,129(3):493-506.
[58]Cohen Y,Rubin A E,Vaknin M.Post infection application of DL-3-amino-butyric acid (BABA) induces multiple forms of resistance against Bremia lactucae in lettuce[J].European Journal of Plant Pathology,2011,130(1): 13-27.
[59]Hodge S,Ward J L,Galster A M,et al.The effects of a plant defence priming compound,β-aminobutyric acid,on multitrophic interactions with an insect herbivore and a hymenopterous parasitoid[J].Biocontrol,2011,56(2): 699-711.
[60]Sahebani N,Hadavi N S,Zade F O.The effects of beta-amino-butyric acid on resistance of cucumber against root-knot nemetode,Meloidogyne javanica[J].Acta Physiologiae Plantarum,2011,33(2): 443-450.
[61]杨顺强,杨焕文,罗家刚,等.对黑胫病不同抗性烤烟品种根系分泌氨基酸的比较[J].西北农业学报,2015,24(8): 68-74.
[62]张海平,王志,吴书峰.大豆胞囊线虫4号生理小种不同抗性材料根系分泌物对其抗病性的影响[J].大豆科学,2016,35(2): 285-290.
[63]潘凯,吴凤芝.枯萎病不同抗性黄瓜(Cucumis sativus L.)根系分泌物氨基酸组分与抗病的相关性[J].生态学报,2007,27(5): 1945-1950.
[64]王永红,冉炜,张富国,等.混合菌种固体发酵菜粕生产氨基酸肥料的条件研究[J].中国农业科学,2009,42(10): 3530-3540.
[65]李小杏,刘长风.利用膨化羽毛粉生产含氨基酸水溶肥料[J].磷肥与复肥,2013,28(4): 56-59.
[66]彭志平,黄继川,于俊红,等.味精废液对花生产量_品质和土壤酶活性的影响[J].热带作物学报,2012,33(9): 1579-1583.