SU Wenjing,ZHAO Manru,DING Xiaofei,et al.Response of Soybean Seed Germination to Saline-Alkaline Stresses[J].HEILONGJIANG AGRICULTURAL SCIENCES,2024,(05):13-18.[doi:10.11942/j.issn1002-2767.2024.05.0013]
大豆种子萌发对盐碱混合胁迫的响应
- Title:
- Response of Soybean Seed Germination to Saline-Alkaline Stresses
- 文章编号:
- 3
- Keywords:
- soybean; salinity stress; germination parameters; radicle parameters
- 文献标志码:
- A
- 摘要:
- 为促进耐盐碱大豆品种选育和盐碱地合理开发与利用,以4个黑龙江省大豆品种(红研12、垦科豆14、垦科豆28和垦豆62)为试材,以6个梯度(0,30,60,90,120和150 mmol·L-1)盐碱混合液(NaCl∶Na2SO4∶NaHCO3∶Na2CO3摩尔比为1∶9∶9∶1)对试材进行盐碱胁迫处理,采用培养皿滤纸培养法进行发芽试验,分析盐碱胁迫对大豆种子萌发参数及胚根参数的影响。结果表明,低浓度盐碱胁迫(30 mmol·L-1)处理,对红研12萌发有一定促进作用,但对其他品种发芽率和发芽势有较小的抑制作用;随盐碱混合液浓度增大,各处理发芽势和发芽率受到抑制作用也逐渐增强,相同盐碱混合液浓度对不同品种发芽势和发芽率影响不同;盐碱胁迫浓度≥60 mmol·L-1时,大豆种子发芽率和发芽势及耐盐碱指数下降;盐碱胁迫浓度为90 mmol·L-1时,与CK相比,发芽势、发芽率、耐盐碱指数差异均达到显著水平。盐碱胁迫浓度为150 mmol·L-1时,发芽指标受到的抑制作用最强。盐碱胁迫抑制胚根生长,随盐碱混合液浓度增大,胚根长度、胚根鲜重和干重抑制作用越强,不同品种受到抑制程度不同,与发芽势和发芽率相比,胚根长度、胚根鲜重和干重随盐碱胁迫程度增加受到抑制程度更大,下降幅度更大。在相同处理浓度下,不同大豆品种胚根干重受到抑制程度不同。盐碱混合液浓度为90 mmol·L-1时,各处理的胚根参数指标与CK差异均达到显著水平。综合上述,盐碱胁迫浓度为90 mmol·L-1可作为大豆萌发期耐盐碱鉴定处理液的适宜浓度。
- Abstract:
- In order to promote the breeding of salt alkali tolerant soybean varieties and the rational development and utilization of saline alkali land, four soybean varieties from Heilongjiang Province (Hongyan 12, Kenkedou 14, Kenkedou 28, Kendou 62) were used as test materials. Six gradients (0, 30, 60, 90,120 and 150 mmol·L-1) of salt alkali mixed solution (NaCl∶Na2SO4∶NaHCO3∶Na2CO3 molar ratio of 1∶9∶9∶1) were used to treat the test materials with salt alkali stress. The germination experiment was conducted using filter paper culture in a culture dish to analyze the effects of salt alkali stress on soybean seed germination parameters and embryonic root parameters. The results showed that low concentration saline alkali stress (30 mmol·L-1) treatment had a certain promoting effect on the germination of Hongyan 12, but had a relatively small inhibitory effect on the germination rate and germination potential of other varieties. As the concentration of saline alkali mixture increases, the inhibitory effect on germination potential and germination rate of the treatment also gradually increases. The same concentration of saline alkali mixture has different effects on germination potential and germination rate of different varieties; When the concentration of salt alkali stress was ≥ 60 mmol·L-1, the germination rate, germination potential, and salt alkali tolerance index of soybean seeds decrease; When the concentration of salt alkali stress was 90 mmol·L-1, compared with CK, the differences in germination potential, germination rate, and salt alkali tolerance index all reach significant levels. When the concentration of salt alkali stress was 150 mmol·L-1, the germination index was most inhibited and the embryonic root growth was inhibited. As the concentration of salt alkali mixture increases, the inhibitory effect on root length, root fresh weight, and dry weight became stronger. Different varieties were subject to different degrees of inhibition. Compared with germination potential and germination rate, embryonic root length, embryonic root fresh weight, and dry weight were more inhibited and decrease more with the increase of salt alkali stress. Under the same treatment concentration, the inhibition of embryonic root dry weight varies among different soybean varieties. When the concentration of saline alkali mixture was 90 mmol·L-1, the differences in embryonic root parameter indicators and CK between each treatment reach a significant level. Based on the above results, a salt alkali stress concentration of 90 mmol · L-1 could be used as the appropriate concentration for identifying salt alkali tolerance in soybean germination.
参考文献/References:
[1]王志春,杨福,陈渊,等.苏打盐碱胁迫下水稻体内的Na+、K+响应[J].生态环境,2008,17(3):1198-1203.[2]GONG B, WANG X F, WEI M, et al. Overexpression of S-adenosylmethionine synthetase 1 enhances tomato callus tolerance to alkali stress through polyamine and hydrogen peroxide cross-linked networks[J]. Plant Cell, Tissue and Organ Culture (PCTOC), 2016, 124(2): 377-391. [3]WEIL R R, KHALIL N A. Salinity tolerance of winged bean as compared to that of Soybean1[J]. Agronomy Journal, 1986, 78(1): 67-70. [4]胡宗英,张红香,孙泽威.盐碱胁迫对农牧作物种子萌发的影响研究进展[J].中国种业,2014(5):21-23.[5]孙小芳,郑青松,刘友良.NaCl胁迫对棉花种子萌发和幼苗生长的伤害[J].植物资源与环境学报,2000,9(3):22-25.[6]KAN G Z, ZHANG W, YANG W M, et al. Association mapping of soybean seed germination under salt stress[J]. Molecular Genetics and Genomics, 2015, 290(6): 2147-2162. [7]张旗,陶梦慧,李丹,等.盐碱胁迫对野生大豆种子萌发的影响[J].畜牧与饲料科学,2022,43(4):104-108.[8]周妍.盐胁迫对大豆种子萌发、离子平衡及可溶性糖含量影响的研究[D].长春:东北师范大学,2014.[9]邵桂花,万超文,李舒凡.大豆萌发期耐盐生理初步研究[J].作物杂志,1994(6):25-27.〖ZK)〗[10]ZHANG W J, NIU Y, BU SH, et al. Epistatic association mapping for alkaline and salinity tolerance traits in the soybean germination stage[J].PLoS One, 2014, 9: e847501. [11]徐芬芬,楚婕妤,刘誉,等.盐胁迫对大豆种子萌发过程中吸水和水解酶活性的影响[J].大豆科学,2017,36(1):74-77.[12]杨莉萍,张乃群,张驰.盐胁迫对野生大豆种子萌发的影响[J].河南农业,2023(1):48-49.[13]那桂秋,寇贺,曹敏建.不同大豆品种种子萌发期耐盐碱性鉴定[J].大豆科学,2009,28(2):352-356.[14]季平,张鹏,徐克章,等.不同类型盐碱胁迫对大豆植株生长性状和产量的影响[J].大豆科学,2013,32(4):477-481.[15]冯钟慧,刘晓龙,姜昌杰,等.吉林省粳稻种质萌发期耐碱性和耐盐性综合评价[J].土壤与作物,2016,5(2):120-127.[16]于莹,吴广文,黄文功,等.2个亚麻品种萌发期耐盐碱性比较研究[J].中国麻业科学,2013,35(3):139-143.[17]寇贺,曹敏建,那桂秋.大豆种子萌发期耐盐性综合鉴定指标初探[J].杂粮作物,2007,27(5):352-354.[18]彭小星,张红岩,滕长才,等.蚕豆种质资源芽期耐盐碱性鉴定评价及耐盐碱种质筛选[C]//第二十届中国作物学会学术年会论文摘要集.长沙,2023:285.[19]张明伟,高欣梅,福英,等.燕麦种子萌发和幼苗生长盐碱耐性综合鉴定及评价[J].农业与技术,2024,44(4):31-36.[20]廖珍凤,王剑,宋西娇,等.盐胁迫对大豆种子萌发过程中子叶超微结构的影响[J].浙江农业科学,2022,63(6):1250-1256,1261.[21]薛天源,鲁金春子,何思晓,等.286份甘蓝型油菜种质苗期耐盐碱性综合评价[J].植物遗传资源学报,2024,25(3):356-372.[22]杜敏.混合盐碱胁迫对苜蓿种子萌发特性的影响[J].当代畜牧,2019(10):30-31.[23]张兆宁,李江辉,赵怡宇,等.不同程度盐胁迫下大豆萌发期耐盐性鉴定[J].大豆科学,2023,42(3):335-343.[24]张新草,薛项潇,姜深,等.大豆种质发芽期耐盐碱性鉴定及指标筛选[J].西北农业学报,2020,29(3):374-381.
相似文献/References:
[1]吕静,韩莉梅,张所有.超氧化物歧化酶模拟物(SODM)对大豆保护酶系统的影响[J].黑龙江农业科学,2013,(01):23.
LYUJing,HANLi-mei,ZHANGSuo-you.EffectsofSuperoxideDismutaseMimics(SODM)onSoybeanProtectiveEnzymeSystem[J].HEILONGJIANG AGRICULTURAL SCIENCES,2013,(05):23.
[2]吴俊彦,于晓光.黑河地区灾后补种大豆品种筛选试验[J].黑龙江农业科学,2014,(07):13.
WU Jun yan,YU Xiao guang.Soybean Varieties Screening Test for Reseeding in Heihe Region after Disaster[J].HEILONGJIANG AGRICULTURAL SCIENCES,2014,(05):13.
[3]安咏梅,王家军,李进荣,等.大豆抗胞囊线虫的分子标记研究[J].黑龙江农业科学,2014,(07):15.
AN Yong mei,WANG Jia jun,LI Jin rong,et al.Molecular Marker Assisted Selection on Soybean Resistant to Soybean Cyst Nematode[J].HEILONGJIANG AGRICULTURAL SCIENCES,2014,(05):15.
[4]刘兴龙,王克勤,朱立新,等.大豆蚜对大豆阶段性危害研究[J].黑龙江农业科学,2014,(06):57.
LIU Xinglong,WANG Keqin,ZHU Lixin,et al.Study on Effect of Soybean Aphid on Soybean Growth at Different Stages[J].HEILONGJIANG AGRICULTURAL SCIENCES,2014,(05):57.
[5]赵 寅.富裕县大豆生产现状及发展建议[J].黑龙江农业科学,2014,(05):150.
ZHAO Yin.Production Situation and Suggestions of Soybean in Fuyu County[J].HEILONGJIANG AGRICULTURAL SCIENCES,2014,(05):150.
[6]郑 旭,赵秀梅,王连霞,等.25%阿维〖DK1〗·福〖DK1〗·莠锈悬浮种衣剂病害防效试验[J].黑龙江农业科学,2014,(05):54.
ZHENG Xu,ZHAO Xiu-mei,WANG Lian-xia,et al.Field Efficacy Trial of 25% Abamectin·Thiram·Carboxin FSC Against Soybean Disease[J].HEILONGJIANG AGRICULTURAL SCIENCES,2014,(05):54.
[7]袁明. 齐齐哈尔大豆综合试验站现代农业产业示范基地建设成效的探讨[J].黑龙江农业科学,2013,(01):143.
YUANMing.DiscussiononConstructionEffectofQiqiharSoybeanComprehensiveExperimentalStationofModernAgriculturalIndustrializationDemonstrationBase[J].HEILONGJIANG AGRICULTURAL SCIENCES,2013,(05):143.
[8]李亮,李泽宇,王丽娜,等.不同大豆品种耐盐性表现分析[J].黑龙江农业科学,2013,(02):17.
LI Liang,LI Ze-yu,WANG Li-na,et al.Performance Analysis on Salt Tolerance for Different Soybean Varieties[J].HEILONGJIANG AGRICULTURAL SCIENCES,2013,(05):17.
[9]郑新利,张丙双,寇贺.东北地区大豆生产主要问题及发展对策[J].黑龙江农业科学,2012,(02):146.
ZHENG Xin-li,ZHANG Bing-shuang,KOU He.Main Problems and Developing Countermeasuresof Soybean in Northeast China[J].HEILONGJIANG AGRICULTURAL SCIENCES,2012,(05):146.
[10]孙羽,冯延江,王麒,等.玉米茬原垄卡种大豆对其生长及产量的影响[J].黑龙江农业科学,2014,(03):26.
SUN Yu,FENG Yan jiang,WANG Qi,et al.Effect of Original Ridge Tillage on the Growth and Yield of Soybean[J].HEILONGJIANG AGRICULTURAL SCIENCES,2014,(05):26.
备注/Memo
收稿日期:2024-01-05?