MENG Xianghai,WANG Baicheng,ZHANG Xingzhe,et al.Screening of High-Efficiency Degrading Bacteria from Edible Fungi and Optimization of Enzyme-Producing Conditions of Main Strains[J].HEILONGJIANG AGRICULTURAL SCIENCES,2023,(12):55-63.[doi:10.11942/j.issn1002-2767.2023.12.0055]
食用菌菌渣高效降解菌的筛选及主菌株产酶环境优化
- Title:
- Screening of High-Efficiency Degrading Bacteria from Edible Fungi and Optimization of Enzyme-Producing Conditions of Main Strains
- 文章编号:
- 10
- Keywords:
- edible fungi; waste bacterial residue; cellulose degrading bacteria; screening; enzymatic conditions
- 文献标志码:
- A
- 摘要:
- 为筛选出高效降解食用菌废弃菌渣的复合菌系,有效促进菌渣的降解速率,明确复合菌系主要功能菌株最佳发酵环境。利用富集培养、限性继代培养和低温逐代驯化技术对205份采集的菌源材料进行筛选,通过对纤维素酶活性的测定,选取最佳菌源提取物料。同时采用划线分离培养,分离主要功能菌株,对菌株的产酶条件进行优化。结果表明,从205份菌源提取物质中分离纯化的1个具有较强的纤维素降解能力的材料,发现该菌属于曲霉属,产酶较高的主菌株是聚多曲霉(Aspergillus sydowii),对该菌株的产酶环境优化发现,产半纤维素酶和纤维素酶的最优环境是菌渣35 g·L-1、硫酸铵3.5 g·L-1、吐温-80为14 mL·L-1、KH2PO4 1.0 g·L-1、MgSO4·7H2O 1.0 g·L-1、NaCl 0.5 g·L-1、FeSO4·7H2O 0.1 g·L-1,培养时间为15 d。最终明确了复合菌系中主要功能菌株的菌株类别及其发酵环境,可为废弃菌渣资源的快速降解提供宝贵资源,并为菌渣资源肥向利用提供技术依据。
- Abstract:
- In order to screen a compound strain that can efficiently degrade waste mushroom residue, effectively promote the degradation rate of mushroom residue, and determine the optimal fermentation environment for the main functional strains of the compound strain. The indoor test method was used to screen 205 bacterial source materials collected by enrichment culture, limited subculture and low-temperature generation by generation domestication technology. The best bacterial source extraction materials were selected through the determination of cellulase activity. At the same time, the main functional strains were isolated by streak culture, and the enzyme production conditions of the strains were optimized. The results showed that a material with the strongest cellulose degradation ability was isolated and purified from 205 bacterial extracts. It was found that the strain belonged to Aspergillus, and the main strain with high enzyme production was Aspergillus sydowii. The optimization of enzyme production conditions of the strain showed that the optimal conditions for producing hemicellulase and cellulase were 35 g·L-1 of bacterial residue, 3.5 g·L-1 of ammonium sulfate, 1.4 mL·L-1 of Tween-80, 1.0 g·L-1 of KH2PO4, 1.0 g·L-1 of MgSO4 · 7H2O, 0.5 g·L-1 of NaCl, 0.1 g·L-1 of FeSO4 · 7H2O, the incubation time was 15 days.The results of this study identified the main functional strains in the complex strains and their fermentation environment, which provided valuable resources for the rapid degradation of waste bacterial residue resources and provided technical basis for the utilization of bacterial residue resource fertilizer.
参考文献/References:
[1]WILLIAMS B C,McMULLAN J T,McCAHEY S.An initial assessment of spent mushroom compost as a potential energy feedstock[J].Bioresource Technology,2001,79(3):227-230.[2]PHAN C W, SABARATNAM V.Potential uses of spent mushroom substrate and its associated lignocellulosic enzymes[J].Applied Microbiology and Biotechnology,2012,96(4):863-873.[3]李林超,张超,董庆,等.堆肥过程中纤维素降解菌的分离与鉴定[J].生物技术通报,2019,35(9):165-171.[4]郜道玉,周源,龚萍,等.耐高温纤维素降解菌株的筛选、鉴定及其酶活力的测定[J].饲料研究,2022,45(19):69-73.[5]吴婧,聂彩娥,朱媛媛,等.一株兼具产IAA能力纤维素降解菌的筛选、鉴定及条件优化[J].生物技术通报,2020,36(12):54-63.[6]潘知乐,杨鸿,时佳旭,等.纤维素降解菌的筛选鉴定及其特性研究概况[J].环境科学与管理,2019,44(4):102-105.[7]张必周,高聚林,于晓芳,等.玉米秸秆低温降解菌的分离与鉴定及复配菌降解效果研究[J].玉米科学,2020,28(6):168-175.[8]李娜,韩永武,金勋,等.一株低温秸秆纤维素降解菌的分离、鉴定及降解特性[J].玉米科学,2019,27(1):159-163.[9]单建荣,全鑫,朱用哲,等.一株低温纤维素降解菌的筛选与产酶条件优化[J].生态学杂志,2021,40(4):1128-1136.[10]马海玲.基于动物粪便的纤维素分解菌筛选及分解纤维素能力研究[D].北京:中国地质大学,2012.[11]刘晓梅,邹亚杰,胡清秀,等.菌渣纤维素降解菌的筛选与鉴定[J].农业环境科学学报,2015,34(7):1384-1391.[12]葛江丽,施汉钰,刘瑰琦,等.筛选产纤维素酶菌株及其产酶条件的优化[J].安徽农业科学,2014,42(30) :10441-10442,10455.[13]韩梦颖,王雨桐,高丽,等.降解秸秆微生物及秸秆腐熟剂的研究进展[J].南方农业学报,2017,48(6):1024-1030.[14]罗萍,陈永辉,贺军军,等.菠萝渣纤维素降解菌的筛选及鉴定[J].微生物学杂志,2011,31(2):59-63.[15]石春芳,李欣,莫紫琳.醋渣纤维素降解菌的筛选鉴定及混合菌系的构建[J].科学技术与工程,2018,18(9):194-197.[16]武肖莎,李再兴,黄亚丽,等.高温木质纤维素降解菌的筛选鉴定及其堆肥应用[J].安徽农业科学,2021,49(20):68-71.[17]孙悦.高温纤维素降解菌的分离与鉴定研究[D].秦皇岛:河北科技师范学院,2021.[18]李林超.堆肥中具有纤维素降解功能的菌株筛选及其应用效果评价[D].泰安:山东农业大学,2020.[19]ZHANG Q,LO C M,JU L K.Factors affecting foaming behavior in cellulase fermentation by Trichoderma reesei Rut C-30[J].Bioresource Technology,2007,98(4):753-760.[20]GHOSE T K.Measurement of cellulase activities[J].Pure and Applied Chamistry,1987,59(2):257-268.[21]齐云,袁月祥,陈飞,等.一组纤维素分解菌的分离、筛选及其产酶条件的研究[J].天然产物研究与开发,2003,15(6):510-512.[22]郑惠华,陈惠,张志才.高温纤维素分解菌筛选及JSU-5产纤维素酶特性研究[J].安徽农业科学,2009,37(7):3040-3042,3048.[23]〖KG(-0.2mm〗 魏景超.真菌分类鉴定手册[M].上海:上海科技出版社,1974.〖KG)〗[24]丁寅寅,刘明广.食用菌菌渣中酶的利用研究[J].吉林工程技术师范学院学报,2016,32(2):89-91.[25]宫秀杰,钱春荣,于洋,等.近年纤维素降解菌株筛选研究进展[J].纤维素科学与技术,2021,29(2):68-77.[26]许玉林,郑月霞,叶冰莹,等.一株纤维素降解真菌的筛选及鉴定[J].微生物学通报,2013,40(2):220-227.[27]佀胜利,邹莎莎,吴书云,等.纤维素降解菌的分离、鉴定与产酶条件探究[J].南方农业,2022,16(2):21-23,54.[28]ADSUL M G,BASTAWDE K B,VARMA A J,et al .Strain improvement of Penicillium janthinellum NCIM 1171 for increased cellulase production[J].Bioresource Technology,2007,98(7):1467-1473.[29]李子婧,刘帆,汤胜,等.纤维素降解菌长枝木霉菌(Trichoderma longibrachiatum)ZJ-10的筛选及产酶条件优化[J].浙江大学学报(农业与生命科学版),2022,48(5):614-624.[30]赖国栋,秦长生,赵丹阳,等.纤维素降解菌株的分离与筛选[J].林业与环境科学,2021,37(4):24-32.
相似文献/References:
[1]张术丽.佳木斯市食用菌产业发展的途径与对策[J].黑龙江农业科学,2014,(06):106.
ZHANG Shuli.Pathways and Countermeasures for Edible Fungus Industry Development of Jiamusi City[J].HEILONGJIANG AGRICULTURAL SCIENCES,2014,(12):106.
[2]姜 明,荆 伟,陈 鑫.不同比例滑菇菌糠提取液对几种食用菌菌丝生长的影响[J].黑龙江农业科学,2014,(05):113.
JIANG Ming,JING Wei,CHEN Xin.ffect of Different Proportions of Aquatic Extraction Substance from Residue of Pholiota microspora on Hyphae Growth of Edible Fungi[J].HEILONGJIANG AGRICULTURAL SCIENCES,2014,(12):113.
[3]孙延芳,李子昂,梁宗锁,等.食用菌多糖及其红外光谱分析[J].黑龙江农业科学,2011,(10):99.
SUN Yan-fang,LI Zi-ang,LIANG Zong-suo,et al.Polysaccharides and Infrared Spectral Analysis of Edible Fungus[J].HEILONGJIANG AGRICULTURAL SCIENCES,2011,(12):99.
[4]林国智.几种杀菌剂对食用菌中曲霉和木霉的抑菌效果比较[J].黑龙江农业科学,2015,(02):113.[doi:10.11942/j.issn1002-2767.2015.02.0113]
LIN Guo-zhi.Antibacterial Effect Comparison of Several Fungicides Against Aspergillus and Trichoderma in Edible Fungi[J].HEILONGJIANG AGRICULTURAL SCIENCES,2015,(12):113.[doi:10.11942/j.issn1002-2767.2015.02.0113]
[5]马云桥.我省食用菌生产现状与对策[J].黑龙江农业科学,2005,(04):32.[doi:10.11942/j.issn1002-2767.2005.04.0032]
MA Yun-qiao.The Current Situation and Countermeasure on Producing Edible Fungi of Heilongjiang Province[J].HEILONGJIANG AGRICULTURAL SCIENCES,2005,(12):32.[doi:10.11942/j.issn1002-2767.2005.04.0032]
[6]吕晓丽.浅析黑河山区的大型食药用菌资源[J].黑龙江农业科学,2007,(04):79.[doi:10.11942/j.issn1002-2767.2007.04.0079]
L Xiao-li.Large Edible and Medicinal Fungi Resource on the Mountainous Area of Heihe City[J].HEILONGJIANG AGRICULTURAL SCIENCES,2007,(12):79.[doi:10.11942/j.issn1002-2767.2007.04.0079]
[7]王冶,王旭,马世玉,等.黑龙江省凤凰山自然保护区大型真菌资源调查[J].黑龙江农业科学,2016,(06):105.[doi:10.11942/j.issn1002-2767.2016.06.0105]
WANG Ye,WANG Xu,MA Shi-yu,et al.Resources Investigation of Macrofungi in Fenghuangshan Nature Reserve in Heilongjiang Province[J].HEILONGJIANG AGRICULTURAL SCIENCES,2016,(12):105.[doi:10.11942/j.issn1002-2767.2016.06.0105]
[8]刘春光.秸秆栽培食用菌高产技术初探[J].黑龙江农业科学,2018,(01):100.[doi:10.11942/j.issn1002-2767.2018.01.0100]
LIU Chun-guang.Preliminary Study on High Yield Cultivation Technique of Edible Fungus by Straw[J].HEILONGJIANG AGRICULTURAL SCIENCES,2018,(12):100.[doi:10.11942/j.issn1002-2767.2018.01.0100]
[9]王丽娜,葛颜祥,刘 倩.食用菌工厂化生产的盈亏平衡分析[J].黑龙江农业科学,2018,(02):105.[doi:10.11942/j.issn1002-2767.2018.02.0105]
WANG Li-na,GE Yan-xiang,LIU Qian.Breakeven Analysis of Edible Fungus Industrialized Production[J].HEILONGJIANG AGRICULTURAL SCIENCES,2018,(12):105.[doi:10.11942/j.issn1002-2767.2018.02.0105]
[10]李亚娇,孙国琴,郭九峰,等.食用菌菌种退化机制及预防措施的最新研究进展[J].黑龙江农业科学,2018,(02):136.[doi:10.11942/j.issn1002-2767.2018.02.0136]
LI Ya-jiao,SUN Guo-qin,GUO Jiu-feng,et al.Latest Research Progress on the Degradation Mechanism and Preventive Measures of Edible Fungus Strains[J].HEILONGJIANG AGRICULTURAL SCIENCES,2018,(12):136.[doi:10.11942/j.issn1002-2767.2018.02.0136]
备注/Memo
收稿日期:2023-08-12