WANG Jiangxu.Mapping and Analysis of Rice Flag Leaf Width Gene Based on GWAS[J].HEILONGJIANG AGRICULTURAL SCIENCES,2023,(02):1-5.[doi:10.11942/j.issn1002-2767.2023.02.0001]
基于关联分析的水稻剑叶宽基因定位与分析
- Title:
- Mapping and Analysis of Rice Flag Leaf Width Gene Based on GWAS
- 文章编号:
- 1
- Keywords:
- rice; leaf shape; flag leaf width; GWAS; main QTLs
- 文献标志码:
- A
- 摘要:
- 叶形是影响粳稻光合作用和碳水化合物积累的重要因素之一,而叶宽是决定水稻叶形的核心性状之一。挖掘和利用新的叶宽相关基因/QTL可以进一步丰富分子育种理论,提升叶宽性状遗传改良的效率。本研究利用295份粳稻品种的自然群体,于2020年和2021年对各品种的剑叶宽进行考察。结合高通量重测序获得的788 396个高质量多态性SNP,对粳稻剑叶宽相关性状进行全基因组关联分析(GWAS),共检测到45个关联SNPs,分布在水稻的12条染色体上,表型贡献率范围为861%~1576%。其中,qFL10在两年间被重复检测到,定位区间在10.11 Mb~10.23 Mb,此区段内包含15个基因。
- Abstract:
- Leaf shape is one of the important factors affecting photosynthesis and carbohydrate accumulation in rice (Oryza sativa Geng Group), while leaf width is one of the core traits determining leaf shape in rice. Mining and using new leaf width related genes/QTLs can further enrich molecular breeding theory and improve the effect of genetic improvement of leaf width traits. In this study, 295 natural populations of rice (Oryza sativa Geng Group) varieties were used to investigate the flag leaf width of each variety in 2020 and 2021. Combined with 788 396 high-quality polymorphic SNPs obtained by high-throughput re-sequence, GWAS was performed on the correlation of flag leaf width in rice. A total of 45 associated SNPs were detected, distributed on 12 chromosomes of rice, and the phenotypic contribution rate ranged from 8.61% to 15.76%. Among them, qFL10 was detected repeatedly in two years, and the localization interval was 1011 Mb-10.23 Mb, which contained 15 genes.
参考文献/References:
[1]姚栋萍,刘春林,吴丹,等.水稻叶形遗传调控机理的研究进展[J].湖南农业科学,2014(5):6-9.[2]陈洪娟,商晨阳,黄梅艳,等.水稻叶片夹角调控机制的研究进展[J/OL].分子植物育种,2021:1-25(2021-05-11)[2022-10-15].http://kns.cnki.net/kcms/detail/46.1068.s.20210420.1030.002.html.[3]WANG J J,XU J,QIAN Q,et al.Development of rice leaves:how histocytes modulate leaf polarity establishment[J].Rice Science,2020,27(6):468-479.[4]MACKAY I,POWELL W.Methods for linkage disequilibrium mapping in crops[J].Trends in Plant Science,2007,12(2):57-63.[5]LANDER E S,BOTSTEIN D.Mapping mendelian factors underlying quantitative traits using RFLP linkage maps[J].Genetics,1989,121(1):185-199.[6]JIANG D,FANG J J,LOU L M,et al.Characterization of a null allelic mutant of the rice NAL1 gene reveals its role in regulating cell division[J].PLoS One,2015,10(2):e0118169.[7]FUJINO K,MATSUDA Y,OZAWA K,et al.Narrow leaf 7 controls leaf shape mediated by auxin in rice[J].Molecular Genetics & Genomics,2008,279:499-507.[8]GUO T T,WANG D F,FANG J J.Mutations in therice OsCHR4 gene,encoding a CHD3 family chromatin remodeler,induce narrow and rolled leaves with increased cuticular wax[J].International Journal of Molecular Sciences,2019,20(10):2567.[9]XU J,WANG L,WANG Y X,et al.Reduction of OsFLW7 expression enhanced leaf area and grain production in rice[J].Science Bulletin,2017,62(24):1631-1633.[10]LI N,ZHENG H L,CUI J N,et al.Genome-wide association study and candidate gene analysis of alkalinity tolerance in japonica rice germplasm at the seedling stage[J].Rice,2019,12(1):1-12.[11]McCOUCH S R,CHEN X,PANAUD O,et al.Microsatellite marker development,mapping and applications in rice genetics and breeding[J].Springer Netherlands,1997,35(1-2):89-99.[12]WANG M,HUANG Q,LIN P,et al.The overexpression of a transcription factor gene VbWRKY32 enhances the cold tolerance in Verbena bonariensis[J].Frontiers in Plant Science,2020,10:1746.[13]CHEN Z C,YAMAJI N,FUJII-KASHINO M,et al.A cation-chloride cotransporter gene is required for cell elongation and osmoregulation in rice[J].Plant Physiology,2016,171(1):494-507.[14]MUHAMMAD F,TAGLE A G,SANTOS R E,et al.Quantitative trait loci mapping for leaf length and leaf width in rice cv.IR64 derived lines[J].Journal of Integrative Plant Biology,2010,52(6):578-584.[15]ZHANG S,WANG S K,XU Y X,et al.The auxin response factor,OsARF19,controls rice leaf angles through positively regulating OsGH3-5 and OsBRI1[J].Plant,Cell & Environment,2015,38(4):638-654.[16]LI D,WANG L,WANG M,et al.Engineering OsBAK1 gene as a molecular tool to improve rice architecture for high yield[J].Plant Biotechnology Journal,2009,7(8):791-806.[17]JIAO Y,WANG Y,XUE D,et al.Regulation of OsSPL14 by OsmiR156 defines ideal plant architecture in rice[J].Nat Genet,2010,42(6):541-544.[18]SCHMITZ A J,BEGCY K,SARATH G,et al.Rice Ovate Family Protein 2 (OFP2) alters hormonal homeostasis and vasculature development[J].Plant Science,2015,241:177-188.[19]HE P L,WANG X W,ZHANG X B,et al.Short and narrow flag leaf1,a GATA zinc finger domain-containing protein,regulates flag leaf size in rice (Oryza sativa L.)[J].BMC Plant Biology,2018,18(1):273.[20]IKEDA A.Slender rice,a constitutive gibberellin response mutant,is caused by a null mutation of the SLR1 gene,an ortholog of the height-regulating gene GAI/RGA/RHT/D8[J].The Plant Cell Online,2001,13(5):999-1010.[21]ITOH J I.A recessive heterochronic mutation,plastochron1,shortens the plastochron and elongates the vegetative phase in rice[J].The Plant Cell,1998,10(9):1511-1522.[22]HU J,ZHU L,ZENG D,et al.Identification and characterization of narrow and rolled leaf 1,a novel gene regulating leaf morphology and plant architecture in rice[J].Plant Molecular Biology,2010,73(3):283-292.[23]CAI J,ZHANG M,GUO L B,et al.QTLs for rice flag leaf traits in doubled haploid populations in different environments[J].Genetics and Molecular Research,2015,14(2):6786-6795.
相似文献/References:
[1]迟莉.11%多·咪·福美双悬浮种衣剂防治水稻恶苗病田间药效试验[J].黑龙江农业科学,2013,(02):59.
CHI LI.The Field Efficacy Trial of 11% Carbendazim?Prochloraz?Thiram FSC to Prevent Rice Bakanae Disease[J].HEILONGJIANG AGRICULTURAL SCIENCES,2013,(02):59.
[2]王玉洋,蒋柳青,董雪梅,等. 不同因素对水稻愈伤组织形成的影响[J].黑龙江农业科学,2013,(01):11.
WANGYu-yang,JIANGLiu-qing,DONGXue-mei,et al.EffectofDifferentFactorsonRiceCallusFormation[J].HEILONGJIANG AGRICULTURAL SCIENCES,2013,(02):11.
[3]丁佳红,薛正莲,杨超英. 水杨酸对铜胁迫下水稻幼苗膜脂过氧化作用的影响[J].黑龙江农业科学,2013,(01):14.
DINGJia-hong,XUEZheng-lian,YANGChao-ying.EffectofSalicylicAcidonMembraneLipidPeroxidationinRiceSeedlingsunderCopperStress[J].HEILONGJIANG AGRICULTURAL SCIENCES,2013,(02):14.
[4]王岩成,胡焕春,岳萍. 一定体积的水稻种子间隙吸水量的定量试验[J].黑龙江农业科学,2013,(01):27.
WANGYan-cheng,HUHuan-chun,YUEPing.QuantitativeTestofRiceSeedsGapWaterAbsorptionofCertainVolume[J].HEILONGJIANG AGRICULTURAL SCIENCES,2013,(02):27.
[5]解忠.不同温度对水稻灌浆期籽粒淀粉关键酶活性及稻米品质的影响[J].黑龙江农业科学,2014,(07):32.
XIE Zhong.Effect of Different Temperature on Grain Starch Key Enzyme Activity and Rice Quality at Filling Stage[J].HEILONGJIANG AGRICULTURAL SCIENCES,2014,(02):32.
[6]张智杰.牡丹江地区水稻生产现状及发展趋势[J].黑龙江农业科学,2014,(07):144.
ZHANG Zhi-jie.Present Situation and Development Trends of Rice Production in Mudanjiang Region[J].HEILONGJIANG AGRICULTURAL SCIENCES,2014,(02):144.
[7]张智杰.水稻粒形性状的QTL分析[J].黑龙江农业科学,2014,(06):15.
LIN Hong,SUN Dequan,LI Suiyan,et al.Evaluation on Induction Rate of Maize Haploid Derived ?Lines for Different Groups F1[J].HEILONGJIANG AGRICULTURAL SCIENCES,2014,(02):15.
[8]曾宪国,项洪涛,王立志,等.孕穗期不同低温对水稻空壳率的影响[J].黑龙江农业科学,2014,(06):19.
ZENG Xianguo,XIANG Hongtao,WANG Lizhi,et al.Effect of Different Low Temperature on the Percentage of Rice Unfilled Grains in Booting Stage[J].HEILONGJIANG AGRICULTURAL SCIENCES,2014,(02):19.
[9]白 雪,郑桂萍,王宏宇,等.寒地水稻侧深施肥效果的研究[J].黑龙江农业科学,2014,(06):40.
BAI Xue,ZHENG Guiping,WANG Hongyu,et al.Research on the Effect of Side and Deep Fertilizing for Rice in Cold Region[J].HEILONGJIANG AGRICULTURAL SCIENCES,2014,(02):40.
[10]王晓东,王茂青,王红霞.寒地水稻种质资源产量构成因素与产量的关系研究[J].黑龙江农业科学,2014,(06):5.
WANG Xiao-dong,WANG Mao-qing,WANG Hong-xia.Analysis on the Relationship Between Yield Components and Yield of Rice Germplasm in Cold Region[J].HEILONGJIANG AGRICULTURAL SCIENCES,2014,(02):5.
备注/Memo
基金项目:黑龙江省省属科研院所科研业务费(CZKYF2022-1-B011);黑龙江省农业科学院院级课题(2021YYYF037);高端外国专家引进项目(G2022011015)