[1]JOSSE E M,HALLIDAY K J.Skotomorphogenesis:the dark side of light signalling[J].Current Biology,2008,18(24):1144-1146.[2]LI J,TERZAGHI W,GONG Y,et al.Modulation of BIN2 kinase activity by HY5 controls hypocotyl elongation in the light[J].Nature Communications,2020,11(1):1592.[3]SCHERES B,WOLKENFELT H,WILLEMSEN V,et al.Embryonic origin of the Arabidopsis primary root and root meristem initials[J].Development,1994,120(9):2475-2475.
[4]宋丽珍,王逸,杨青华,等.生长素在植物胚胎早期发育中的作用[J].植物学报,2013,48(4):371-380.
[5]宋雨函,张锐.高等植物下胚轴伸长的调控机制[J].生命的化学,2021,41(6):1116-1125.
[6]王红飞,尚庆茂.被子植物下胚轴细胞伸长的分子机理[J].植物学报,2018,53(2):276-287.
[7]岳剑茹,赫云建,邱天麒,等.植物微管骨架参与下胚轴伸长调节机制研究进展[J].植物学报,2021,56(3):363-371.
[8]LEW R R.How does a hypha grow? The biophysics of pressurized growth in fungi[J].Nature Reviews Microbiology,2011,9(7):509-518.
[9]CHEN L Y,SHI D Q,ZHANG W J,et al.The arabidopsis alkaline ceramidase TOD1 is a key turgor pressure regulator in plant cells[J].Nature Communications,2015,6(1):6030.
[10]TINA S,GERHARD L M.The biomechanics of seedgermination[J].Journal of Experimental Botany,2016,68(4):765-783.
[11]ARGIOLAS A,PULEO G L,SINIBALDI E,et al.Osmolyte cooperation affects turgor dynamics in plants[J].Scientific Reports,2016,6(1):30139.
[12]KUTSCHERA U.Gravitropism of axial organs in multicellular plants[J].Advances in Space Research,2001,27(5):851-860.
[13]KUTSCHERA U,Niklas K J.Cell division and turgor-driven stem elongation in juvenile plants:a synthesis[J].Plant Science,2013,207:45-56.
[14]张保才,周奕华.植物细胞壁形成机制的新进展[J].中国科学:生命科学,2015,45(6):544-556.
[15]COSGROVE D J.Growth of the plant cell wall[J].Nature Reviews Molecular Cell Biology,2005,6(11):850-861.
[16]GENOVESI V,FORNALE S,FRC S C,et al.ZmXTH1,a new xyloglucan endotransglucosylase/hydrolase in maize,affects cell wall structure and composition in Arabidopsis thaliana[J].Journal of Experimental Botany,2008,59(4):875-889.
[17]KAMI C,LORRAIN S,HORNITSCHEK P,et al.Light-regulated plant growth and development[J].Current Topics in Developmental Biology,2010,91:29-66.
[18]OLLE M,VIRILE A.The effects of light-emitting diode lighting on greenhouse plant growth and quality[J].Agricultural and Food Science,2013,22(2):223-234.
[19]XIAO Y T,CHU L,ZHANG Y M,et al.HY5:a pivotal regulator of light-dependent development in higher plants[J].Frontiers in Plant Science,2022,12:3294.
[20]OYAMA T,SHIMURA Y,OKADA K.The Arabidopsis HY5 gene encodes a bZIP protein that regulates stimulus-induced development of root and hypocotyl[J].Genes & Development,1997,11(22):2983-2995.
[21]LEIVAR P,MONTE E.PIFs:systems integrators in plant development[J].The Plant Cell,2014,26(1):56-78.
[22]JIANG M,WEN G S,ZHAO C L.Phylogeny and evolution of plant phytochrome interacting factors (PIFs) gene family and functional analyses of PIFs in Brachypodium distachyon[J].Plant Cell Reports,2022,41(5):1209-1227.
[23]LEGRISM,INCE Y ,FANKHAUSER C.Molecular mechanisms underlying phytochrome-controlled morphogenesis in plants[J].Nature Communications,2019,10(1):5219.[24]DAHLKE R I,FRAAS S,ULLRICH K K,et al.Protoplast swelling and hypocotyl growth depend on different auxin signaling pathways[J].Plant Physiology,2017,175(2):982-994.
[25]HUSSAIN S,WANG W,AHMED S,et al.PIP2,an auxin induced plant peptide hormone regulates root and hypocotyl elongation in Arabidopsis[J].Frontiers in Plant Science,2021,12:646736.
[26]LIN W W,ZHOU X,TANG W X,et al.TMK-based cell-surface auxin signalling activates cell-wall acidification[J].Nature,2021,599(7884):278-282.
[27]GUO R,HU Y,AOI Y,et al.Local conjugation of auxin by the GH3 amido synthetases is required for normal development of roots and flowers in Arabidopsis[J].Biochemical and Biophysical Research Communications,2022,589:16-22.
[28]YU Y W,HUANG R F.Integration of ethylene and light signaling affects hypocotyl growth in Arabidopsis[J].Frontiers in Plant Science,2017,8:57.
[29]WANG X H,MA Q Q,WANG R,et al.Submergence stress-induced hypocotyl elongation through ethylene signaling-mediated regulation of cortical microtubules in Arabidopsis[J].Journal of Experimental Botany,2020,71(3):1067-1077.
[30]CLAEYS H,DE BODT S,INZ D.Gibberellins and DELLAs:central nodes in growth regulatory networks[J].Trends in Plant Science,2014,19(4):231-239.
[31]PANG Y Q,LI J T,QI B S,et al.Aquaporin AtTIP5;1 as an essential target of gibberellins promotes hypocotyl cell elongation in Arabidopsis thaliana under excess boron stress[J].Functional Plant Biology,2018,45(3):305-314.
[32]JIANG H K,SHUI Z W,XU L,et al.Gibberellins modulate shade-induced soybean hypocotyl elongation downstream of the mutual promotion of auxin and brassinosteroids[J].Plant Physiology and Biochemistry,2020,150:209-221.
[33]MANDAVA N B.Plant growth-promoting brassinosteroids[J].Annual Review of Plant Physiology and Plant Molecular Biology,1988,39(1):23-52.
[34]NAKAYA M,TSUKAYA H,MURAKAMI N,et al.Brassinosteroids control the proliferation of leaf cells of Arabidopsis thaliana[J].Plant & Cell Physiology,2002,43(2):239-244.
[35]MORILLON R,CATTEROU M,SANGWAN RS,et al.Brassinolide may control aquaporin activities in Arabidopsis thaliana[J].Planta,2001,212(2):199-204.
[36]BAI M Y,SHANG J X,OH E,et al.Brassinosteroid,gibberellin and phytochrome impinge on a common transcription module in Arabidopsis[J].Nature Cell Biology,2012,14(8):810-807.
[37]IBAEZ C,DELKER C,MARTINEZ C,et al.Brassinosteroids dominate hormonal regulation of plant thermomorpho gene sis via BZR1[J].Current Biology,2018,28(2):303-310.
[38]BELLSTAEDT J,TRENNER J,LIPPMANN R,et al.A mobile auxin signal connects temperature sensing in cotyledons with growth responses in hypocotyls[J].Plant Physiology,2019,180(2):757-766.
[39]ZHUANG Y M,LIAN W J,TANG X F,et al.MYB42 inhibits hypocotyl cell elongation by coordinating brassinosteroid homeostasis and signaling in Arabidopsis thaliana[J].Annals Of Botany,2022,129(4):403-413.
[40]GOMI K.Jasmonic acid:an essential plant hormone[J].International Journal of Molecular Sciences,2020,21(4):1261.
[41]YI R,YAN J B,XIE D X.Light promotes jasmonate biosynthesis to regulate photomorphogenesis in Arabidopsis[J].Science China(Life Sciences),2020,63(7):943-952.
[42]VLEZ-BERMDEZI C,SCHMIDT W.Chromatin enrichment for proteomics in plants (ChEP-P) implicates the histone reader ALFIN-LIKE 6 in jasmonate signalling[J].BMC Genomics,2021,22(1):845.
[43]马海燕.葡萄生长过程中内源激素含量变化的研究[D].陕西:西北农林科技大学,2007.
[44]LORRAIR,BOCCACCINI A,RUTA V,et al.Abscisic acid inhibits hypocotyl elongation acting on gibberellins,DELLA proteins and auxin[J].AoB Plants,2018,10(5):ply061.
[45]YUDINA L,SUKHOVA E,SHERSTNEVA O,et al.Exogenous abscisic acid can influence photosynthetic processes in peas through a decrease in activity of H+-ATP-ase in the plasma membrane[J].Biology,2020,9(10):324.
[46]ZENG Y W,VERSTRAETEN I,TRINH H K,et al.Arabidopsis hypocotyl adventitious root formation is suppressed by ABA signaling[J].Genes,2021,12(8):1141.
[47]HAYASHI Y,TAKAHASHI K,INOUE S,et al.Abscisic acid suppresses hypocotyl elongation by dephosphorylating plasma membrane H+-ATPase in Arabidopsis thaliana[J].Plant And Cell Physiology,2014,55(4):845-853.
[48]PARK Y J,LEE H J,HA J H,et al.COP1 conveys warm temperature information to hypocotyl thermomorphogenesis[J].New Phytologist,2017,215(1):269-280.
[49]ZHANG L L,SHAO Y J,DING L,et al.XBAT31 regulates thermoresponsive hypocotyl growth through mediating degradation of the thermosensor ELF3 in Arabidopsis[J].Science Advances,2021,7(19):eabf4427.
[50]HWANG G,PARK J,KIM S,et al.Overexpression of BBX18 promotes thermomorphogenesis through the PRR5-PIF4 pathway[J].Frontiers In Plant Science,2021,24(12):782352.
[51]LIQ,CHAI L,TONG N,et al.Potential carbohydrate regulation mechanism underlying starvation-induced abscission of tomato flower[J].International Journal of Molecular Sciences,2022,23(4):1952.
[52]SIMON N M L,SAWKINS E,DODD A N.Involvement of the SnRK1 subunit KIN10 in sucrose-induced hypocotyl elongation[J].Plant Signaling & Behavior,2018,13(6):e1457913.
[53]GARCA-GONZLEZ J,LACEK J,WECKWERTH W,et al.Exogenous carbon source supplementation counteracts root and hypocotyl growth limitations under increased cotyledon shading,with glucose and sucrose differentially modulating growth curves[J].Plant Signaling & Behavior,2021,16(11):1969818.
[54]MATSUMOTO S,KUMASAKI S,SOGA K,et al.Gravity-induced modifications to development in hypocotyls of Arabidopsis tubulin mutants[J].Plant Physiology,2010,152(2):918-926.[55]KATO S,MURAKAMI M,SAIKA R,et al.Suppression of cortical microtubule reorientation and stimulation of cell elongation in Arabidopsis hypocotyls under microgravity conditions in space[J].Plants(Basel),2022,11(3):465.
[56]KARKI N,VERGISH S,ZOLTOWSKI B D.Cryptochromes:photochemical and structural insight into magnetoreception[J].Protein Science,2021,30(8):1521-1534.
[57]XU J Q,WANG X J,ZHU H Q,ET AL.Maize genotypes with different zinc efficiency in response to low zinc stress and heterogeneous zinc supply[J].Frontiers in Plant Science,2021,12:736658.
[58]EZAKI N,KIDO N,TAKAHASHI K,et al.The role of wall Ca2+ in the regulation of wall extensibility during the acid-induced extension of soybean hypocotyl cell walls[J].Plant and Cell Physiology,2005,46(11):1831-1838.
[59]魏丽娟,申树林,黄小虎,等.锌胁迫下甘蓝型油菜发芽期下胚轴长的全基因组关联分析[J].作物学报,2021,47(2):262-274.