[1]赵 迪,刘仁泽,郭长虹,等.植物高温抗性转录因子基因工程研究进展[J].黑龙江农业科学,2014,(06):130-134.
 ZHAO Di,LIU Renze,GUO Changhong,et al.Genetic Engineering Advance for Heat Tolerance Transcription Factors of Plants[J].HEILONGJIANG AGRICULTURAL SCIENCES,2014,(06):130-134.
点击复制

植物高温抗性转录因子基因工程研究进展

参考文献/References:


[1]Sun W,Motangu MV,Verbruggen.Small heat shock proteins and stress tolerance in plants[J].Biochimca Biophysica Acta,2002,1577(1):19.
[2]Singh A,Mittal D,Lavania D,et al.OsHsfA2c and OsHsfB4b are involved in the transcriptional regulation of cytoplasmic OsClpB(Hsp100)gene in rice(Oryza sativa L.)[J] .Cell Stress and Chaperones,2012,17(2):243-254.
[3]Miller G,Mittler R.Could heat shock transcription factors function as hydrogen peroxide sensors in plants[J].Annals of Botany,2006,98(2):279-288.
[4]Mittal D,Enoki Y,Lavania D,et al.Binding affinities and interactions among different heat shock element types and heat shock factors in rice(Oryza sativa L.)[J].FEBS Journal,2011,278(17):3076-3085.
[5]Romero I,Fuertes A,Benito M,et al.More than 80 R2R3MYB regulatory genes in the genome of Arabidopsis thaliana[J].Plant Journal,1998,14(3):273-284.
[6]Kazuko YS,Takeshi U,Kazuo S.Regulation of genes that are induced by drought stress in Arabidopsis thaliana[J].Journal of Plant Research,1995,108(1089):127-136.
[7]Llewellyn DJ,Machado A,AiGhazi Y,et al.Expression profiling identifies candidate genes for fiber yield and quality[J].Cotton Science,2008(S1):9.
[8]Zhang Y,Cao G,Qu LJ,et al.Involvement of an R2R3MYB transcription factor gene AtMYB118 in embryogenesis in Arabidopsis[J].Plant Cell Reports,2009,28(3):337-346.
[9]Eulgem T,Somssich I E.Networks of WRKY transcription factors in defense signaling[J].Current Opinion in Plant Biology,2007,10(4):366-371.
[10]Guo Y,Cai Z,Gan S.Transcriptome of Arabidopsis leaf senescence[J].Plant Cell Environment,2004,27(5):521-549.
[11]晁旭,王东平,巩振辉,等.拟南芥热激转录因子耐高温功能分析[J].西北植物学报,2007,27(7):1305-1310.
[12]陈晓军,叶春江,吕慧颖,等.GmHSFA1基因克隆及其过量表达提高转基因大豆的耐热性[J].遗传,2006,28(11):1411-1420.
[13]Yoshida T,Ohama N,Nakajima J,et al.Arabidopsis HsfA1 transcription factors function as the main positive regulators in heat shockresponsive gene expression[J].Molecular and General Genetics,2011,286(56):321-332.
[14]Qin F,Kakimoto M,Sakuma Y,et al.Regulation and function analysis of ZmDREB2A in response to drought and heat stresses in Zea mays L.[J].Plant Journal,2007, 50(1) :54-69.
[15]Hong B,Ma C,Yang YJ,et al.Overexpression of AtDREB1A in chrysanthemum enhances tolerance to heat stress[J].Plant Molecular Biology Reporter,2009,70(3):231-240.
[16]Matsukura S,Mizoi J,Yoshida T,et al.Comprehensive analysis of rice DREB2type genes that encode transcription factors involved in the expression of abiotic stressresponsive genes[J].Molecular Genetics and Genomics,2010,283:185-196.
[17]Lim C J,Hwang J E,Chen H,et al.Overexpression of the Arabidopsis DRE/CRTbinding transcription factor DREB2C enhances thermotolerance[J].Biochemical and Biophysical Research Communications,2007,362(2):431-436.
[18]Chen H,Hwang J E,Lim C J,et al.Arabidopsis DREB2C functions as a transcriptional activator of HsfA3 during the heat stress response[J].Biochemical and Biophysical Research Communications 2010,401(2):238-244.
[19]Kang H G,Kim J,Jeong H,et al.Overexpression of FTL1/DDF1,an AP2 transcription factor,enhances tolerance to cold,drought and heat stresses in Arabidopsis thaliana[J].Plant Science,2011,180(4):634-641.
[20]田双梅,董汉松.转录因子AtMYB44促进拟南芥抗病耐热及抑制开花的作用[D].南京:南京农业大学,2012.
[21]Feng C P,Andreasson E,Maslak A,et al.Arabidopsis MYB68 in development and responses to environmental cues[J].Plant Science,2004,167(5):1099-1107.
[22]Li S H J,Fu Q T,Chen L G,et al.Arabidopsis thaliana WRKY25,WRKY26 and WRKY33 coordinate induction of plant thermotolerance[J].Planta,2011,233(6):1237-1252.
[23]Li S J,Fu Q T,Huang W D,et al.Functional analysis of an Arabidopsis transcription factor WRKY25 in heat stre ss[J] .Plant Cell Reports,2009,28(4):683-693.
[24]Wu X L,Shiroto Y,Kishitani S,et al.Enhanced heat and drought tolerance in transgenic rice seedlings overexpressing OsWRKY11 under the control of HSP101 promo ter[J] .Plant Cell Reports,2009,28:21-30
[25]Li S J,Zhou X,Chen L G,et al.Functional characterization of Arabidopsis thaliana WRKY39 in heat stress[J].Molecules and Cells,2010,29(5):475-483.
[26]王学兰,林良斌,余迪求.拟南芥WRKY68转录调控因子的表达谱分析[J].植物分类与资源学报,2013,35(1):41-47.
[27]Huang J,Wang M M,Jiang Y,et al.Expression analysis of rice A20/AN1type zinc finger genes and characterization of ZFP177 that contributes to temperature stress toler ance[J] .Gene,2008,420(2):135-144.
[28]Dixit A R,Dhankher O P.A novel stressassociated protein‘AtSAP10’from Arabidopsis thaliana confers tolerance to nickel,manganese,zinc,and high temperature stress[J/OL].201169.http://dx.doi.org/10.1371/journal.pone.e20921.
[29]Davletova S,Schlauch K,Coutu J,et al.The zincfmger protein Zatl2 plays a central role in reactive oxygen and abiotic stress signaling in Arabidopsis[J].Plant Physiology,2005,139(2):847-856.[30]Rizhsky L,Davletova S,Liang H,et al.The zinc finger protein Zat12 is required for cytosolic ascorbate peroxidase 1 expression during oxidative stress in Arabidopsis[J].The Journal of Biological Chemistry,2004,279(12):11736-11743.
[31]Vogel J T,Zarka D G,Van Buskirk H A,et al.Roles of the CBF2 and ZAT 12 transcription factors in configuring the low temperature transcriptome of Arabidopsis[J].Plant Journal,2005,41(2):195-211.[32]Mittler R,Kim Y,Song L,et al.Gainand lossof function mutations in Zat10 enhance the tolerance of plants to abiotic stress[J].FEBS Letters,2006,580(2829):6537-6542.
[33]Sakamoto H,Maruyama K,Sakuma Y,et al.Arabidopsis Cys2/His2type zincfinger proteins function as transcription repressors under drought,cold and highsalinity stress conditions[J].Plant Physiology,2004,136:2734-2746.
[34]Gao H,Brandizzi F,Benning C,et al.A membranetethered transcription factor defines a branch of the heat stress response in Arabidopsis thaliana[J].Proceedings of the National Academy of Sciences of the USA,2008,105(42):16398-16403.
[35]喻旭,牛向丽,杨盛慧,等.过量表达转录因子OsbZIP60对水稻抗热和抗旱能力的研究[J].中国农业科学,2011, 44(20) :4142-4149.
[36]Paliwal R,Roder M S,Kumar U,et al.QTL mapping of terminal heat tolerance in hexaploid wheat(T.aestivum L.)[J].Theoretical Applide Genetics,2012,125(3):561575.
[37]曹立勇,赵建根,占小登,等.水稻耐热性的QTL定位及耐热性与光合速率的相关性[J].中国水稻科学,2003, 17(3) :223-227.
[38]Kasuga M,Miura S,Shinozaki K,et al.A combination of theArabidopsis DREB1A gene and stress inducible rd29A promoter improved droughtand lowtemperature stress tolerance in tobacco by gene transfer[J].Plant Cell Physiology,2004,45(3):346350.
[39]Pellegrineschi A,Reynolds M,Pacheco M,et al.Stressinduced expression in wheat of the Arabidopsis thaliana DREB1A gene delays water stress symptoms under greenhouse conditions[J].Genome,2004,47(3):493-500.

相似文献/References:

[1]王志坤. 黑龙江省西北部地区土壤有机质下降的影响及改良对策[J].黑龙江农业科学,2013,(01):36.
 WANGZhi-kun.EffectofSoilOrganicMatterDeclineandItsImprovementCountermeasuresofNorthwestRegioninHeilongjiangProvince[J].HEILONGJIANG AGRICULTURAL SCIENCES,2013,(06):36.
[2]秦春林.城市公园植物生态景观设计的探讨[J].黑龙江农业科学,2013,(06):90.
 QINChun-lin.DiscussionontheDesignofPlantsEcologicalLandscapeinUrbanPark[J].HEILONGJIANG AGRICULTURAL SCIENCES,2013,(06):90.
[3]岳莉然,高春义,李永峰.人工湿地中植物的生理生态研究进展[J].黑龙江农业科学,2011,(06):143.
 YUE Li-ran,GAO Chun-yi,LI Yong-feng.Research Progress on the Physiology andEcology of Plants in Constructed Wetland[J].HEILONGJIANG AGRICULTURAL SCIENCES,2011,(06):143.
[4]赵 芒,牛雅静,马樱宁.中国古典园林的季相景观[J].黑龙江农业科学,2011,(09):79.
 ZHAO Mang,NIU Ya-jing,MA Ying-ning.Seasonal Landscape in Classical Chinese Garden[J].HEILONGJIANG AGRICULTURAL SCIENCES,2011,(06):79.
[5]王 芳.抑制消减杂交技术在植物病害研究中的应用[J].黑龙江农业科学,2011,(11):136.
 WANG Fang.Application of the Suppression Subtractive Hybridization Technique in Plant-Diseases[J].HEILONGJIANG AGRICULTURAL SCIENCES,2011,(06):136.
[6]蒋冬月,李永红.植物挥发性有机物的研究进展[J].黑龙江农业科学,2011,(11):143.
 JIANG Dong-yue,LI Yong-hong.Review on Volatile Organic Compounds of Plant[J].HEILONGJIANG AGRICULTURAL SCIENCES,2011,(06):143.
[7]孙 羽.丛枝菌根真菌在植物生态系统中的调控作用[J].黑龙江农业科学,2011,(08):128.
 SUN Yu.Role of Arbuscular Mycorrhizal Fungi in Plant Ecosystems[J].HEILONGJIANG AGRICULTURAL SCIENCES,2011,(06):128.
[8]相静波.中国古典园林中植物的应用探讨[J].黑龙江农业科学,2010,(08):101.
 XIANG Jing-bo.Preliminary Analysis of the Application of Garden Plants in Classical Gardens[J].HEILONGJIANG AGRICULTURAL SCIENCES,2010,(06):101.
[9]张勇.植物配置在城市园艺设计中的问题浅析[J].黑龙江农业科学,2013,(10):76.
 ZHANG Yong.Analysis on Problems of Plant Configuration in Urban Gardening Design[J].HEILONGJIANG AGRICULTURAL SCIENCES,2013,(06):76.
[10]宋 恒,杨 猛,徐恒戬.关于我国淡水富营养水体修复植物研究的分析[J].黑龙江农业科学,2014,(12):107.
 SONG Heng,YANG Meng,XU Heng-jian.Analysis on the Plants Used in Rehabilitationof Eutrophic Fresh Water in China[J].HEILONGJIANG AGRICULTURAL SCIENCES,2014,(06):107.

备注/Memo

收稿日期:2014-02-19

基金项目:国家高技术研究发展计划资助项 目(2013-AA102607);国家转基因生物新品种培育重大专项资助项 目(2011-ZX08004 002);哈尔滨师范大学研发专项资助项 目(YF-201201);黑龙江省自然科学基金研究资助项 目(C2013-08C0601);哈尔滨师范大学遗传学大学生实践创新团队
第一作者简介:赵迪(1987-),女,黑龙江省大兴安岭人,在读硕士,从事遗传学研究。E-mail:bishui_zhaodi@126.com。通讯作者:郭东林(1973-),女,吉林省白城市人,博士,教授。E-mail:gdl1225@163.com。

更新日期/Last Update: 2014-08-03