LI Jiang,JIN Yanling,ZHAO Hai.Effects of Plant Growth Promoting Rhizobacteria(PGPR) on Plant Growth and Its Mechanism[J].HEILONGJIANG AGRICULTURAL SCIENCES,2023,(10):132-137.[doi:10.11942/j.issn1002-2767.2023.10.0132]
根际促生菌对植物生长的影响及其作用机制
- Title:
- Effects of Plant Growth Promoting Rhizobacteria(PGPR) on Plant Growth and Its Mechanism
- 文章编号:
- 25
- Keywords:
- plant; growth promoting rhizobacteria; mechanism
- 文献标志码:
- A
- 摘要:
- 长期以来,我国农业生产过度依赖化肥,忽视了植物-微生物-土壤系统巨大的生物学潜力。植物根际促生菌可以在根际释放养分,具有促进植物生长的功能,是微生物肥料的主要来源菌种,具有广阔的应用前景。在我国化肥减施政策的约束下,研究植物根际促生菌的促生特性及其作用,对于推动农业的高产和高效具有重要作用。因此,本文综述了国内外关于植物根际促生菌在促进植物生长方面的作用机制及土壤-促生菌-植物互作机制的研究进展,并对其在微生物肥料开发、应用及推动绿色农业发展中的应用进行展望。
- Abstract:
- For a long time, agricultural production in China has relied excessively on chemical fertilizers, neglecting the enormous biological potential of the plant-microbial-soil system. Plant growth promoting rhizobacteria (PGPR) can release nutrients in the rhizosphere and promote plant growth. They are the main source of microbial fertilizers and have broad application prospects. Under the policy of restricting chemical fertilizer in China, investigating the characteristics and effects of PGPR plays an important role in enhancing yield and efficiency of agricultural production. Therefore, this article reviewed the research progress on the mechanism of PGPR in promoting plant growth and the interaction mechanism between soil-PGPR-plants at home and abroad, and prospected its application in the development and application of microbial fertilizers and the promotion of green agriculture development.
参考文献/References:
[1]MARTNEZ O A,JORQUERA M,GAJARDO G,et al.Mechanisms and practical considerations involved in plant growth promotion by rhizobacteria[J].Journal of Soil Science & Plant Nutrition,2010,10(3):293-319.[2]BHATTACHARYYA P,JHA D.Plant growth-promoting rhizobacteria (PGPR):emergence in agriculture[J].World Journal of Microbiology & Biotechnology,2012,28(4):1327-1350.[3]HA S,TRAN L S.Understanding plant responses to phosphorus starvation for improvement of plant tolerance to phosphorus deficiency by biotechnological approaches[J].Critical Reviews in Biotechnology,2014,34(1):16-30.[4]DING Y,YI Z,FANG Y,et al.Multi-Omics reveal the efficient phosphate-solubilizing mechanism of bacteria on rocky soil[J].Frontiers in Microbiology,2021,12:761972.[5]SAFIRZADEH S,CHOROM M,ENAYATIZAMIR 〖KG)〗N.Effect of phosphate solubilising bacteria (Enterobacter cloacae) on phosphorus uptake efficiency in sugarcane (Saccharum officinarum L.)[J].Soil Research,2019,57(4):333-341.[6]SHRIDHAR B S.Nitrogen fixing microorganisms[J].Microbiology Research,2012,3(1):46-52.[7]CHAUDHARY D,NARULA N,SINDHU S S,et al.Plant growth stimulation of wheat (Triticum aestivum L.) by inoculation of salinity tolerant Azotobacter strains[J].Physiology and Molecular Biology of Plants,2013,19:515-519.[8]JIN H Y,WANG H,ZHANG Y H.Genome-based identification and plant growth promotion of a nitrogen-fixing strain isolated from soil[J].Acta Microbiologica Sinica,2021,61(10):3249-3263.[9]魏志敏,孙斌,方成,等.固氮芽孢杆菌 N3 的筛选鉴定及其对二月兰的促生效果[J].土壤,2021,53(1):64-71.[10]RASHID U,YASMIN H,HASSAN M N,et al.Drought-tolerant Bacillus megaterium isolated from semi-arid conditions induces systemic tolerance of wheat under drought conditions[J].Plant Cell Reports,2021,41:549-569.[11]MA Y,OLIVEIRA R S,NAI F,et al.The hyperaccumulator Sedum plumbizincicola harbors metal-resistant endophytic bacteria that improve its phytoextraction capacity in multi-metal contaminated soil[J].Journal of Environmental Management,2015,156:62-69.[12]SOUZA M S T,de BAURA V A,SANTOS S A,et al.Azospirillum spp.from native forage grasses in Brazilian Pantanal floodplain:biodiversity and plant growth promotion potential[J].World Journal of Microbiology and Biotechnology,2017,33:1-13.[13]YADAV S,SINGH K,CHANDRA R. Chapter 13 plant growth-promoting-phizobacteria(PGPR) and bioremediation of industrial W[M]//CHANDRA R,SOBTI R C.Microbes for Sustainable Development and Bioremediation.CRC Press,2019:207.[14]MYO E M,GE B,MA J J,et al.Indole-3-acetic acid production by Streptomyces fradiae NKZ-259 and its formulation to enhance plant growth[J].BMC Microbiology,2019,19:1-14.[15]陈越,李虎林,朱诗苗,等.产吲哚乙酸 (IAA) 促生菌的分离鉴定及对烟草种子萌发和幼苗生长发育的影响[J].作物杂志,2020,36(2):176-181.[16]ZHANG C,YU Z,ZHANG M,et al.Serratia marcescens PLR enhances lateral root formation through supplying PLR-derived auxin and enhancing auxin biosynthesis in Arabidopsis[J].Journal of Experimental Botany,2022,73(11):3711-3725.[17]KANG S M,JOO G J,HAMAYUN M,et al.Gibberellin production and phosphate solubilization by newly isolated strain of Acinetobacter calcoaceticus and its effect on plant growth[J].Biotechnology Letters,2009,31:277-281.[18]SHAHZAD R,KHAN A L,BILAL S,et al.Inoculation of abscisic acid-producing endophytic bacteria enhances salinity stress tolerance in Oryza sativa[J].Environmental and Experimental Botany,2017,136:68-77.[19]吴秉奇,梁永江,丁延芹,等.两株烟草根际拮抗菌的生防和促生效果研究[J].中国烟草科学,2013,34(1):66-71.[20]GUO Y,JUD W,WEIKL F,et al.Volatile organic compound patterns predict fungal trophic mode and lifestyle[J].Communications Biology,2021,4(1):673.[21]YE X,CHEN Y,MA S,et al.Biocidal effects of volatile organic compounds produced by the myxobacterium Corrallococcus sp.EGB against fungal phytopathogens[J].Food Microbiology,2020,91:103502.[22]HUNG R,LEE S,BENNETT J W.Fungal volatile organic compounds and their role in ecosystems[J].Applied Microbiology and Biotechnology,2015,99:3395-3405.[23]SCHULZ S,DICKSCHAT J S.Bacterial volatiles:the smell of small organisms[J].Natural Product Reports,2007,24(4):814-842.[24]RAYA-GONZLEZ J,VELZQUEZ-BECERRA C,BARRERA-ORTIZ S,et al.N,N-dimethyl hexadecylamine and related amines regulate root morphogenesis via jasmonic acid signaling in Arabidopsis thaliana[J].Protoplasma,2017,254:1399-1410.[25]FARAG M A,ZHANG H,RYU C M.Dynamic chemical communication between plants and bacteria through airborne signals:induced resistance by bacterial volatiles[J].Journal of Chemical Ecology,2013,39:1007-1018.[26]HE A L,ZHAO L Y,REN W,et al.A volatile producing Bacillus subtilis strain from the rhizosphere of Haloxylon ammodendron promotes plant root development[J].Plant and Soil,2023,486:661-680.[27]WANG J N,RAZAA W,JIANG G F,et al.Bacterial volatile organic compounds attenuate pathogen virulence via evolutionary trade-offs[J].The ISME Journal,2023,17(3):443-452.[28]CORDOVEZ V,MOMMER L,MOISAN K,et al.Plant phenotypic and transcriptional changes induced by volatiles from the fungal root pathogen Rhizoctonia solani[J].Frontiers in Plant Science,2017,8:1262.[29]RAMOS-GALARZA C,BOLAOS-PASQUEL M,GARCA-GMEZ A,et al.La escala EFECO para valorar funciones ejecutivas en formato de auto-reporte[J].Revista Iberoamericana de Diagnósticoy Evaluación-e Avaliao Psicológica,2019,1(50):83-93.[30]CAO Y,PI H,CHANDRANGSU P,et al.Antagonism of two plant-growth promoting Bacillus velezensis isolates against ralstonia solanacearum and gusarium oxysporum[J].Scientific Reports,2018,8(1):1-14.[31]SANG M K,JEONG J J,KIM J,et al.Growth promotion and root colonisation in pepper plants by phosphate-solubilising Chryseobacterium sp.strain ISE14 that suppresses Phytophthora blight[J].Annals of Applied Biology,2018,172(2):208-223.[32]JIANG C H,LIAO M J,WANG H K,et al.Bacillus velezensis,a potential and efficient biocontrol agent in control of pepper gray mold caused by Botrytis cinerea[J].Biological Control,2018,126:147-157.[33]ZHANG R,VIVANCEO J M,SHEN Q.The unseen rhizosphere root-soil-microbe interactions for crop production[J].Current Opinion in Microbiology,2017,37:8-14.[34]付严松,李宇聪,徐志辉,等.根际促生菌调控植物根系发育的信号与分子机制研究进展[J].生物技术通报,2020.36(9):42.[35]LI 〖KG(0.2mm〗Q,LI H C,YANG Z,et al.Plant growth-promoting rhizobacterium Pseudomonas sp.CM11 specifically induces lateral roots[J].The New Phytologist,2022,235(4):1575-1588.[36]HUANG N,WANG W W,YAO Y L,et al.The influence of different concentrations of bio-organic fertilizer on cucumber Fusarium wilt and soil microflora alterations[J].PLoS One,2017,12(2):e0171490.[37]COTTON T E A,PTRIACQ P,CAMERON D D,et al.Metabolic regulation of the maize rhizobiome by benzoxazinoids[J].The ISME Journal,2019,13(7):1647-1658.[38]SASSE J,MARTIONA E,NORTHEN T.Feed your friends:do plant exudates shape the root microbiome?[J].Trends in Plant Science,2018,23(1):25-41.[39]PANG Z,CHEN J,WANG T,et al.Linking plant secondary metabolites and plant microbiomes:a review[J].Frontiers in Plant Science,2021,12:621276.[40]GUO 〖KG(0.5mm〗Q,YU J,SUN J,et al.Exogenous inoculation of microorganisms effect on root exudates and rhizosphere microorganism of tobaccos[J].Advances in Microbiology,2021,11(9):510-528.[41]BADRI D V,VIVANCO J M.Regulation and function of root exudates[J].Plant,Cell & Environment,2009,32(6):666-681.[42]EISENHAUER N.Aboveground-belowground interactions as a source of complementarity effects in biodiversity experiments[J].Plant and Soil,2012,351:1-22.[43]TRIVEDI P,LEACH J E,TRINGE S G,et al.Plant-microbiome interactions:from community assembly to plant health[J].Nature Reviews Microbiology,2020,18(11):607-621.[44]VIVES-PERIS V,OLLAS C D,A GMEZ-CADENAS,et al.Root exudates:from plant to rhizosphere and beyond[J].Plant Cell Reports,2020,39(1):3-17.[45]AULAKH M S,WASSMANN R,BUENO C,et al.Impact of root exudates of different cultivars and plant development stages of rice (Oryza sativa L.) on methane production in a paddy soil[J].Plant and Soil,2001,230:77-86.[46]JIANG Y,WANG W,XIE Q,et al.Plants transfer lipids to sustain colonization by mutualistic mycorrhizal and parasitic fungi[J].Science,2017,356(6343):1172-1175.[47]SUN N,YANG C,QIN X,et al.Effects of organic acid root exudates of Malus hupehensis Rehd.derived from soil and root leaching liquor from orchards with apple replant disease[J].Plants,2022,11(21):2968.[48]COQUANT G,AGUANNO D,PHAM S,et al.Gossip in the gut:quorum sensing,a new player in the host-microbiota interactions[J].World Journal of Gastroenterology,2021,27(42):7247.[49]SHAYANTHAN A,ORDOEZ P A C,ORESNIK L J.The role of synthetic microbial communities (SynCom) in sustainable agriculture[J].Frontiers in Agronomy,2022,4:58.[50]SUN X L,XU Z H,XIE J Y,et al.Bacillus velezensis stimulates resident rhizosphere Pseudomonas stutzeri for plant health through metabolic interactions[J].The ISME Journal,2021,16(3):774-787.[51]LI S Y,XIAO J,SUN T Z,et al.Synthetic microbial consortia with programmable ecological interactions[J].Methods in Ecology and Evolution,2022,13(7):1608-1621.[52]de SOUZA R S C, ARMANHI J S L, ARRUDA P. From microbiome to traits: designing synthetic microbial communities for improved crop resiliency[J]. Frontiers in Plant Science, 2020,11:1179.[53]SARKAR M K,PAUL K,BLAIR D.Chemotaxis signaling protein CheY binds to the rotor protein FliN to control the direction of flagellar rotation in Escherichia coli[J].Proceedings of the National Academy of Sciences,2010,107(20):9370-9375.[54]SANTOYO G,URTIS-FLORES C A,LOEZA-LARA P D,et al.Rhizosphere colonization determinants by plant growth-promoting rhizobacteria (PGPR)[J].Biology,2021,10(6):475.[55]ZBORALSKI A,FILION M.Genetic factors involved in rhizosphere colonization by phytobeneficial Pseudomonas spp.[J].Computational and Structural Biotechnology Journal,2020,18:3539-3554.[56]YU K,PIETERSE C M J,BAKKER P A H M,et al.Beneficial microbes going underground of root immunity[J].Plant,Cell & Environment,2019,42(10):2860-2870.[57]TZIPILEVICH E,RUSS D,DANGL J L,et al.Plant immune system activation is necessary for efficient root colonization by auxin-secreting beneficial bacteria.[J].Cell host & microbe,2021,29(10):1507-1520.
相似文献/References:
[1]赵 迪,刘仁泽,郭长虹,等.植物高温抗性转录因子基因工程研究进展[J].黑龙江农业科学,2014,(06):130.
ZHAO Di,LIU Renze,GUO Changhong,et al.Genetic Engineering Advance for Heat Tolerance Transcription Factors of Plants[J].HEILONGJIANG AGRICULTURAL SCIENCES,2014,(10):130.
[2]王志坤. 黑龙江省西北部地区土壤有机质下降的影响及改良对策[J].黑龙江农业科学,2013,(01):36.
WANGZhi-kun.EffectofSoilOrganicMatterDeclineandItsImprovementCountermeasuresofNorthwestRegioninHeilongjiangProvince[J].HEILONGJIANG AGRICULTURAL SCIENCES,2013,(10):36.
[3]秦春林.城市公园植物生态景观设计的探讨[J].黑龙江农业科学,2013,(06):90.
QINChun-lin.DiscussionontheDesignofPlantsEcologicalLandscapeinUrbanPark[J].HEILONGJIANG AGRICULTURAL SCIENCES,2013,(10):90.
[4]岳莉然,高春义,李永峰.人工湿地中植物的生理生态研究进展[J].黑龙江农业科学,2011,(06):143.
YUE Li-ran,GAO Chun-yi,LI Yong-feng.Research Progress on the Physiology andEcology of Plants in Constructed Wetland[J].HEILONGJIANG AGRICULTURAL SCIENCES,2011,(10):143.
[5]赵 芒,牛雅静,马樱宁.中国古典园林的季相景观[J].黑龙江农业科学,2011,(09):79.
ZHAO Mang,NIU Ya-jing,MA Ying-ning.Seasonal Landscape in Classical Chinese Garden[J].HEILONGJIANG AGRICULTURAL SCIENCES,2011,(10):79.
[6]王 芳.抑制消减杂交技术在植物病害研究中的应用[J].黑龙江农业科学,2011,(11):136.
WANG Fang.Application of the Suppression Subtractive Hybridization Technique in Plant-Diseases[J].HEILONGJIANG AGRICULTURAL SCIENCES,2011,(10):136.
[7]蒋冬月,李永红.植物挥发性有机物的研究进展[J].黑龙江农业科学,2011,(11):143.
JIANG Dong-yue,LI Yong-hong.Review on Volatile Organic Compounds of Plant[J].HEILONGJIANG AGRICULTURAL SCIENCES,2011,(10):143.
[8]孙 羽.丛枝菌根真菌在植物生态系统中的调控作用[J].黑龙江农业科学,2011,(08):128.
SUN Yu.Role of Arbuscular Mycorrhizal Fungi in Plant Ecosystems[J].HEILONGJIANG AGRICULTURAL SCIENCES,2011,(10):128.
[9]相静波.中国古典园林中植物的应用探讨[J].黑龙江农业科学,2010,(08):101.
XIANG Jing-bo.Preliminary Analysis of the Application of Garden Plants in Classical Gardens[J].HEILONGJIANG AGRICULTURAL SCIENCES,2010,(10):101.
[10]张勇.植物配置在城市园艺设计中的问题浅析[J].黑龙江农业科学,2013,(10):76.
ZHANG Yong.Analysis on Problems of Plant Configuration in Urban Gardening Design[J].HEILONGJIANG AGRICULTURAL SCIENCES,2013,(10):76.
[11]王秋平,常萌,卢磊.根际促生菌重金属胁迫下缓解植物应激的研究进展[J].黑龙江农业科学,2020,(05):118.[doi:10.11942/j.issn1002-2767.2020.05.0118]
[J].HEILONGJIANG AGRICULTURAL SCIENCES,2020,(10):118.[doi:10.11942/j.issn1002-2767.2020.05.0118]
备注/Memo
收稿日期:2023-04-12