ZHAO Ming,CHANG Chunyan,WANG Zhuoran,et al.Influenctial Factors and Prediction Model of Soil Salinity at Different Depths in the Coastal Area of the Yellow River Delta[J].HEILONGJIANG AGRICULTURAL SCIENCES,2023,(02):23-34.[doi:10.11942/j.issn1002-2767.2023.02.0023]
黄三角濒海区不同土层土壤盐分影响因素及预测模型
- Title:
- Influenctial Factors and Prediction Model of Soil Salinity at Different Depths in the Coastal Area of the Yellow River Delta
- 文章编号:
- 5
- Keywords:
- the Yellow River Delta; different soil layers; soil salinity; influencing factors; prediction model
- 文献标志码:
- A
- 摘要:
- 摸清土壤盐分的影响因素是盐渍化土壤改良利用的重要基础。以黄河三角洲濒海垦利区为研究区,选取地下水、植被、地貌、离海距离4个方面的影响因子,确定了地下水埋深、地下水矿化度、植被类型、植被覆盖度、地貌类型、相对高程、离海距离7个指标,分析了各指标与土壤含盐量之间的关系,通过灰色关联分析法筛选出土壤盐分的主要驱动因子,进而构建了不同深度土层土壤含盐量的多元线性回归预测模型。结果表明,地下水埋深与各土层含盐量为指数函数负相关,植被覆盖度、相对高程和离海距离与各土层含盐量均为幂函数负相关,地下水矿化度与各土层含盐量呈指数函数正相关,且随着土层深度的增加各指标与含盐量的相关性逐渐减弱;各土层土壤盐分与各影响因子关联度的排序均为地下水矿化度>植被覆盖度>地下水埋深>相对高程>离海距离,土壤盐分的主要驱动因子一是地下水矿化度和埋深,二是地表植被覆盖度;基于地下水矿化度、植被覆盖度、地下水埋深三因子构建的0~15 cm、15~30 cm、30~45 cm、45~60 cm土层土壤盐分的多元线性回归模型均为最佳盐分预测模型,模型的决定系数(R2)分别为0.742,0.777,0.794和0.828,均方根误差(RMSE)分别为2.079 5,2.081 9,1.868 3和1.623 6,验证集的R2分别为0.712,0.756,0.813和0883,RMSE分别为1.952 0,1.879 7,1.728 9和1.227 3。
- Abstract:
- It is an important basis for the improvement and utilization of salinized soil to find out the influencing factors of soil salinity. Taking the coastal Kenli area of the Yellow River Delta as the study area, this paper selected four influencing factors of groundwater, vegetation, landform and distance from the sea, determined seven indicators of groundwater depth, groundwater mineralization, vegetation type, vegetation coverage, landform type, relative elevation and distance from the sea, analyzed the relationship between each indicator and soil salt content, and selected the main driving factors of soil salt through grey correlation analysis. Then the multiple linear regression prediction model of soil salt content in different depth soil layers was constructed. The results showed that groundwater depth was negatively correlated with the salinity of each soil layer as an exponential function, vegetation cover, relative elevation and distance from the sea were negatively correlated with the power function of the salt content of each soil layer, and groundwater salinity was positively correlated with the salinity of each soil layer as an exponential function, and the correlation between each index and salt content gradually weakens with the increase of soil depth. The ranking of the correlation between soil salinity and each influencing factor in each soil layer was groundwater salinity> vegetation coverage> groundwater burial depth> relative elevation> distance from the Bohai Sea. The main drivers of soil salinity were groundwater salinity and depth, and surface vegetation cover. The multiple linear regression models of soil salinity in 0-15 cm, 15-30 cm, 30-45 cm and 45-60 cm soil layers based on the three factors of groundwater mineralization, vegetation coverage and groundwater depth were the best salt prediction models, determination coefficient of model set (R2)was 0.742, 0.777, 0.794 and 0.828 respectively, and the root mean square error (RMSE) was 2.079 5, 2.081 9, 1.868 3 and 1.623 6 respectively, validation of model set(R2)was 0.712, 0.756, 0.813 and 0.883 respectively, and the root mean square error (RMSE) was 1.952 0, 1.879 7, 1.728 9 and 1.227 3 respectively.
参考文献/References:
[1]杨劲松.中国盐渍土研究的发展历程与展望[J].土壤学报,2008(5):837-845.[2]李光超.黄河三角洲土壤盐渍化研究综述[J].安徽农学通报,2020,26(Z1):113-115.[3]PANKOVA E I,KONYUSHKOVA M V.Climate and soil salinity in the deserts of Central Asia[J].Eurasian Soil Science,2013,46(7):721-727.[4]苏春利,纪倩楠,陶彦臻,等.河套灌区西部土壤盐渍化分异特征及其主控因素[J].干旱区研究,2022,39(3):916-923.[5]王博.喀什噶尔河流域平原区地下水系统特征和生态环境演化分析[D].乌鲁木齐:新疆农业大学,2021.[6]何宝忠,丁建丽,刘博华,等.渭库绿洲土壤盐渍化时空变化特征[J].林业科学,2019,55(9):185-196.[7]张添佑,王玲,韩燕,等.基于GIS和RS的玛纳斯河流域土壤盐渍化敏感性动态评价[J].土壤,2017,49(4):812-818.[8]曹建荣,徐兴永,于洪军,等.黄河三角洲土壤盐渍化原因分析与生态风险评价[J].海洋科学进展,2014,32(4):508-516.[9]黄权中,徐旭,吕玲娇,等.基于遥感反演河套灌区土壤盐分分布及对作物生长的影响[J].农业工程学报,2018,34(1):102-109.[10]于海云,王志军,李彪,等.内蒙古河套灌区融解期土壤盐分多极化雷达响应分析[J].长江科学院院报,2015,32(11):19-24.[11]牛宝茹.塔里木河上游表土积盐量遥感信息提取研究[J].土壤学报,2005(4):674-677.[12]KHAJEHZADEH M,AFZALI S F,HONARBAKHSH A,et al.Remote sensing and GIS-based modeling for predicting soil salinity at the watershed scale in a semi-arid region of southern Iran[J].Arabian Journal of Geosciences,2022,15(5):1-10.[13]杨劲松,姚荣江.黄河三角洲地区土壤水盐空间变异特征研究[J].地理科学,2007(3):348-353.[14]吐尔逊·艾山.渭-库绿洲盐渍化土壤与地下水特征时空变化研究[D].乌鲁木齐:新疆大学,2012.[15]范晓梅,刘高焕,刘红光.基于Kriging和Cokriging方法的黄河三角洲土壤盐渍化评价[J].资源科学,2014,36(2):321-327.[16]段梦琦,张晓光,王豹.黄河三角洲典型区土壤盐分空间分布预测方法研究[J].中国农业资源与区划,2021,42(8):243-250.[17]徐英,葛洲,王娟,等.基于指示Kriging法的土壤盐渍化与地下水埋深关系研究[J].农业工程学报,2019,35(1):123-130.[18]董莉丽,郭玲霞.青海黄河沿岸土壤盐分特征及影响因素研究[J].土壤通报,2016,47(4):882-888.[19]王瑞燕,孔沈彬,许璐,等.黄河三角洲不同地表覆被类型和微地貌的土壤盐分空间分布[J].农业工程学报,2020,36(19):132-141.[20]张子璇,宋雨桐,张惠中,等.水文气候影响下黄河三角洲土壤盐分时空动态[J].应用生态学报,2021,32(4):1393-1405.[21]刘广明,杨劲松.地下水作用条件下土壤积盐规律研究[J].土壤学报,2003(1):65-69.[22]赵自国,赵凤娟,夏江宝,等.地下水矿化度对黄河三角洲柽柳光合及耗水特征的影响[J].自然资源学报,2019,34(12):2588-2600.[23]宋战超,夏江宝,赵西梅,等.不同地下水矿化度条件下柽柳土柱的水盐分布特征[J].中国水土保持科学,2016,14(2):41-48.[24]马玉蕾,王德,刘俊民,等.黄河三角洲典型植被与地下水埋深和土壤盐分的关系[J].应用生态学报,2013,24(9):2423-2430.[25]张同娟,杨劲松,刘广明,等.基于灰色关联度法河口地区土壤盐分影响因子分析[J].土壤通报,2010,41(4):793-796.[26]袁玉芸,瓦哈甫·哈力克,关靖云,等.基于GWR模型的于田绿洲土壤表层盐分空间分异及其影响因子[J].应用生态学报,2016,27(10):3273-3282.[27]侯金鑫,王德,肖鲁湘,等.地下水埋深对土壤水盐、植被影响研究进展[J].鲁东大学学报(自然科学版),2019,35(2):150-156.[28]王卓然,赵庚星,高明秀,等.黄河三角洲垦利县夏季土壤水盐空间变异及土壤盐分微域特征[J].生态学报,2016,36(4):1040-1049.[29]王君.基于高分遥感的黄河三角洲土壤盐渍化变化特征分析[D].济南:济南大学,2020.[30]胡盈盈,王瑞燕,陈红艳,等.黄河三角洲春秋两季土壤盐分遥感反演及时空变异研究[J].测绘与空间地理信息,2018,41(8):78-81.[31]付腾飞.滨海典型地区土壤盐渍化时空变异及监测系统研究应用[D].青岛:中国科学院研究生院(海洋研究所),2015.[32]ZHENG Q,WANG H J,LI W T,et al.Factors influencing soil salinization in Manasi River Basin,China[J].Journal of Agricultural Resources and Environment,2016,33(3):214.[33]沈浩,吉力力·阿不都外力.玛纳斯河流域农田土壤水盐空间分布特征及影响因素[J].应用生态学报,2015,26(3):769-776.[34]袁玉芸,瓦哈甫·哈力克,关靖云,等.基于GWR模型的于田绿洲土壤表层盐分空间分异及其影响因子[J].应用生态学报,2016,27(10):3273-3282.[35]李艳菊,丁建丽,米热古力·艾尼瓦尔.渭-库绿洲土壤剖面盐分分布特征及驱动因子分析[J].灌溉排水学报,2019,38(6):58-65.[36]范晓梅,刘高焕,唐志鹏,等.黄河三角洲土壤盐渍化影响因素分析[J].水土保持学报,2010,24(1):139-144.[37]LIU Q,LI F D,ZHANG Q Y,et al.Impact of water diversion on the hydrogeochemical characterization of surface water and groundwater in the Yellow River Delta[J].Applied Geochemistry,2014,48:83-92.[38]RAVSHANOV N,DALIEC S.Non-linear mathematical model to predict the changes in underground water level and salt concentration[J].Journal of Physics:Conference Series,2020,1441(1):012163.[39]JI K K,FAN J S,ZHAO X,et al.Analysis on dynamic change of vegetation coverage in coastal wetland of Yellow River Delta[J].IOP Conference Series:Earth and Environmental Science,2020,450(1):012108.
相似文献/References:
[1]许经伟,潘莹.黄河三角洲野生草本药用植物资源调查[J].黑龙江农业科学,2014,(04):115.
XU Jing wei,PAN Ying.Investigation on Resources of Wild Medicinal Herbs in Yellow River Delta[J].HEILONGJIANG AGRICULTURAL SCIENCES,2014,(02):115.
[2]许经伟.黄河三角洲湿地水生维管束植物多样性研究[J].黑龙江农业科学,2011,(01):36.
XU Jing-wei.Research on Diversity of Aquatic Vascular Plants inWetland of Yellow River Delta[J].HEILONGJIANG AGRICULTURAL SCIENCES,2011,(02):36.
[3]杨玉武,李永富,赵祥文,等.黄河三角洲滨海盐碱区园林绿化经济树种应用[J].黑龙江农业科学,2014,(10):86.
YANG Yu-wu,LI Yong-fu,ZHAO Xiang-wen,et al.Application of Economic Tree Species in Coastal Saline Alkali Region of the Yellow River Delta[J].HEILONGJIANG AGRICULTURAL SCIENCES,2014,(02):86.
[4]许经伟,潘莹.黄河三角洲地区新农村建设中的生态环境问题及对策研究[J].黑龙江农业科学,2014,(03):123.
XU Jing wei,PAN Ying.Research on the Ecological Environmental Problems and Countermeasures of New Rural Construction in Yellow River Delta[J].HEILONGJIANG AGRICULTURAL SCIENCES,2014,(02):123.
[5]邵秋玲,谢小丁,刘玉新.黄河三角洲六种重要野生耐盐药用植物资源介绍[J].黑龙江农业科学,2015,(12):134.[doi:10.11942/j.issn10022767.2015.12.0134]
SHAO Qiu-ling,XIE Xiao-ding,LIU Yu-xin.Six Important Wild Medicinal Plant Resources with Salt Tolerance in Yellow River Delta[J].HEILONGJIANG AGRICULTURAL SCIENCES,2015,(02):134.[doi:10.11942/j.issn10022767.2015.12.0134]
[6]李云霞,柴美清,李青,等.野生马鞍菌不同土层土壤养分分析[J].黑龙江农业科学,2023,(12):64.[doi:10.11942/j.issn1002-2767.2023.12.0064]
LI Yunxia,CHAI Meiqing,LI Qing,et al.Analysis of Soil Nutrients in Different Soil Layers of Wild Helvella elastica[J].HEILONGJIANG AGRICULTURAL SCIENCES,2023,(02):64.[doi:10.11942/j.issn1002-2767.2023.12.0064]
备注/Memo
国家自然科学基金(41877003);山东省重大科技创新工程项目(2019JZZY010724);山东省“双一流”奖补资金(SYL2017XTTD02)。