[1]YANG Y,GUO Y.Unraveling salt stress signaling in plants[J].Journal of Integrative Plant Biology,2018,60(9):796-804.[2]YANG Y,GUO Y.Elucidating the molecular mechanisms mediating plant salt-stress responses[J].The New Phytologist,2018,217(2):523-539.
[3]MURAT A,TURAN M,AWADELKARIM A,et al.Effect of salt stress on growth,stomatal resistance,proline and chlorophyll concentrations on maize plant[J].African Journal of Agricultural Research,2009,4:893-897.
[4]HSU P D,SCOTT D A,WEINSTEIN J A,et al.DNA targeting specificity of RNA-guided Cas9 nucleases[J].Nature Biotechnology,2013,31(9):827-832.
[5]PLAGENS A,RICHTER H,CHARPENTIER E,et al.DNA and RNA interference mechanisms by CRISPR-Cas surveillance complexes[J].FEMS Microbiology Reviews,2015,39(3):442-463.
[6]杨永昌,常帅,赵欣宇.CRISPR-Cas介导基因编辑技术的发展趋势及研究进展[J].现代医学与健康研究电子杂志,2022,6(6):131-136.
[7]ISHINO Y,SHINAGAWA H,MAKINO K,et al.Nucleotide sequence of the iap gene,responsible for alkaline phosphatase isozyme conversion in Escherichia coli,and identification of the gene product[J].Journal of Bacteriology,1987,169(12):5429-5433.
[8]MOJICA F J,DEZ-VILLASEOR C,SORIA E,et al.Biological significance of a family of regularly spaced repeats in the genomes of archaea,bacteria and mitochondria[J].Molecular Microbiology,2000,36(1):244-246.
[9]JANSEN R,EMBDEN J D,GAASTRA W,et al.Identification of genes that are associated with DNA repeats in prokaryotes[J].Molecular Microbiology,2002,43(6):1565-1575
[10]BARRANGOU R,FREMAUX C,DEVEAU H,et al.CRISPR provides acquired resistance against viruses in prokaryotes[J].Science,2007,315(5819):1709-1712
[11]MARRAFFINI L A,SONTHEIMER E J.CRISPR interference limits horizontal gene transfer in staphylococci by targeting DNA[J].Science,2008,322(5909):1843-1845.
[12]GARST A D,BASSALO M C,PINES G,et al.Genomewide mapping of mutations at single-nucleotide resolution for protein,metabolic and genome engineering[J].Nature Biotechnology,2017,35(1):48-55.[13]WANG T,GUAN C,GUO J,et al.Pooled CRISPR interference screening enables genome-scale functional genomics study in bacteria with superior performance[J].Nature Communications,2018,9(1):2475.
[14]LIAN J,SCHULTZ C,CAO M,et al.Multi-functional genome-wide CRISPR system for high throughput genotype-phenotype mapping[J].Nature Communications,2019,10(1):5794.
[15]LEE H H,OSTROV N,WONG B G,et al.Functional genomics of the rapidly replicating bacterium Vibrio natriegens by CRISPRi[J].Nature Microbiology,2019,4(7):1105-1113.
[16]JINEK M,CHYLINSKI K,FONFARA I,et al.A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity[J].Science,2012,337(6096):816-821.
[17]MARRAFFINI L A,SONTHEIMER E J.Self versus nonself discrimination during CRISPR RNA-directed immunity[J].Nature,2010,463(7280):568-571.
[18]FONFARA I,RICHTER H,BRATOVI〗C-*2 M,et al.The CRISPR-associated DNA-cleaving enzyme Cpf1 also processes precursor CRISPR RNA[J].Nature,2016,532(7600):517-521.[19]ZETSCHE B,GOOTENBERG J S,ABUDAYYEH O O,et al.Cpf1 is a single RNA-guided endonuclease of a class 2 CRISPR-Cas system[J].Cell,2015,163(3):759-771.
[20]SWARTS D C,VAN DER OOST J,JINEK M.Structural basis for guide RNA processing and seed-dependent DNA targeting by CRISPR-Cas12a[J].Molecular cell,2017,66(2):221-233.e4.[21]KIM D,KIM J,HUR J K,et al.Genome-wide analysis reveals specificities of Cpf1 endonucleases in human cells[J].Nature Biotechnology,2016,34(8):863-868.
[22]ABUDAYYEH O O,GOOTENBERG J S,KONERMANN S,et al.C2c2 is a single-component programmable RNA-guided RNA-targeting CRISPR effector[J].Science,2016,353(6299):aaf5573.
[23]LIU L,LI X,MA J,et al.The molecular architecture for RNA-guided RNA cleavage by Cas13a[J].Cell,2017,170(4):714-726.e10.
[24]祁栋灵,韩龙植,张三元.水稻耐盐/碱性鉴定评价方法[J].植物遗传资源学报,2005,6(2):226-230,235.[25]JAMIL M,BAE L D,YONG J K,et al.Effect of salt (nacl) stress on germination and early seedling growth of four vegetables species[J].Journal of Central European Agriculture,2006,7(2):273-281.
[26]张瑞珍,邵玺文,童淑媛,等.盐碱胁迫对水稻源库与产量的影响[J].中国水稻科学,2006,20(1):116-118.
[27]朱明霞,高显颖,邵玺文,等.不同浓度盐碱胁迫对水稻生长发育及产量的影响[J].吉林农业科学,2014,39(6):12-16.
[28]谷娇娇,胡博文,贾琰,等.盐胁迫对水稻根系相关性状及产量的影响[J].作物杂志,2019(4):176-182.
[29]GERONA M,DEOCAMPO M P,EGDANE J A,et al.Physiological responses of contrasting rice genotypes to salt stress at reproductive stage[J].Rice Science,2019,26(4):14.
[30]杨娅坤,赵飞,刘建,等.盐碱胁迫对水稻的影响及其相关机制的研究进展[J].分子植物育种,2021:1-17[2022-0520].http://kns.cnki.net/kcms/detail/46.1068.S.20210315.0838.004.HTML.
[31]胡博文,谷娇娇,贾琰,等.盐胁迫对寒地粳稻籽粒淀粉形成积累及产量的影响[J].华北农学报,2019,34(1):115-123.
[32]周婵婵,王术,黄元财,等.不同水稻品种产量和品质对盐碱胁迫的响应[J].种子,2017,36(11):29-33.
[33]周根友,翟彩娇,邓先亮,等.盐逆境对水稻产量、光合特性及品质的影响[J].中国水稻科学,2018,32(2):146-154.
[34]刘晓龙,徐晨,徐克章,等.盐胁迫对水稻叶片光合作用和叶绿素荧光特性的影响[J].作物杂志,2014(2):88-92.
[35]SURUYAN CHA-UM,KANYARATT S,CHALERMPOL K.Comparative effects of salt stress and extreme pH stress combined on glycinebetaine accumulation,photosynthetic abilities and growth characters of two rice genotypes[J].Rice Science,2009,16(4):274-282.
[36]RAZZAQUE M A,TALUKDER N M,ISLAM M T,et al.Salinity effect on mineral nutrient distribution along roots and shoots of rice(Oryza sativa L.) genotypes differing in salt tolerance[J].Archives of Agronomy & Soil Science,2011,57(1):33-45
[37]汤日圣,童红玉,唐现洪,等.脱落酸提高水稻秧苗耐盐性的效果[J].江苏农业学报,2012,28(4):910-911.
[38]ZOU J,LIU C,LIU A,et al.Overexpression of OsHsp17.0 and OsHsp23.7 enhances drought and salt tolerance in rice[J].Journal of Plant Physiology,2012,169(6):628-635.
[39]石卫标,杨芬,刘姣,等.过表达〖STBX〗OsbHLH120〖STBZ〗基因提高水稻苗期抗旱性[J].基因组学与应用生物学,2019,38(12):5558-5563.
[40]JIN J,DUAN J,SHAN C,et al.Ethylene insensitive3-like2(OsEIL2) confers stress sensitivity by regulating 〖STBX〗OsBURP16〖STBZ〗,the β subunit of polygalacturonase(PG1β-like)subfamily gene in rice[J].Plant Science,2020,292:110353
.[41]索艺宁,张春可,于乔乔,等.盐、碱胁迫下水稻苗期根数和根长的QTL分析[J].华北农学报,2018,33(5):9-15.
[42]李佳锐,张萃雯,刘化龙,等.盐碱胁迫下水稻苗期地上部Na+、K+浓度的QTL分析[J].华北农学报,2020,35(2):35-42.[43]FU L,SHEN Q,KUANG L,et al.Transcriptomic and alternative splicing analyses reveal mechanisms of the difference in salt tolerance between barley and rice[J].Environmental and Experimental Botany,2019,166:103810.
[44]KUMAR V V S,VERMA R K,YADAV S K,et al.CRISPR-Cas9 mediated genome editing of drought and salt tolerance(OsDST)gene in indica mega rice cultivar MTU1010[J].Physiology and Molecular Biology of Plants,2020,26(6):1099-1110.
[45]ZHANG A,LIU Y,WANG F,et al.Enhanced rice salinity tolerance via CRISPR/Cas9-targeted mutagenesis of the 〖STBX〗OsRR22〖STBZ〗 gene[J].Molecular Breeding,2019,39:47.
[46]LIU X,WU D,SHAN T,et al.The trihelix transcription factor OsGTγ-2 is involved adaption to salt stress in rice[J].Plant Molecular Biology,2020,103(4-5):545-560.
[47]BO W,ZHAOHUI Z,HUANHUAN Z,et al.Targeted mutagenesis of NAC transcription factor gene,〖STBX〗OsNAC041〖STBZ〗,leading to salt sensitivity in rice[J].Rice Science,2019,26(2):98-108.