ZHOU Chao,CHAI Xia,WANG Chao.Study on the Effect of Algal Accumulation on the Water Environment of Taihu Lake[J].HEILONGJIANG AGRICULTURAL SCIENCES,2021,(12):23-28.[doi:DOI:10.11942/j.issn1002-2767.2021.12.0023]
藻类聚集对太湖水环境的影响研究
- Title:
- Study on the Effect of Algal Accumulation on the Water Environment of Taihu Lake
- Keywords:
- lake; algae; water environment; eutrophication; nutrient
- 文献标志码:
- A
- 摘要:
- 为探究藻类聚集对湖泊水环境的影响,本研究选取太湖藻类聚集区(竺山湾符渎港近岸带)和开阔水域作为研究区域,从2020年6月-2021年5月定期对研究区域水环境开展调查研究,分析了水体溶解氧(DO)、pH、氧化还原电位(ORP)、总有机碳(TOC)、总氮(TN)和总磷(TP)等指标变化趋势。结果表明:藻类聚集区上覆水的叶绿素a含量高于开阔水域,大量的藻类聚集衰亡降低了上覆水DO浓度,使水体DO浓度降低至接近0 mg·L-1,形成缺氧的环境;藻类聚集区上覆水的TOC、TN、TP的浓度大幅上升,最高分别达到112.53,8.82和1.30 mg·L-1。湖泊藻类聚集导致了湖泊水环境质量的下降,加剧了水体富营养化,因此对湖泊藻类聚集区通过定期打捞减少藻类堆积厚度,可以有效减少藻源性营养盐的输入,减缓水体富营养化进程。
- Abstract:
- In order to explore the impact of algae aggregation on the water environment of the lake,this study selected the algae aggregation area of Taihu Lake(the nearshore zone of Fudu Port in Zhushan Bay)and open water as the study area.From June 2020 to May 2021,the water environment in the study area were investigated regularly.The variation trend of dissolved oxygen(DO),pH,REDOX potential(ORP),total organic carbon(TOC),total nitrogen(TN),total phosphorus (TP) and other indexes were analyzed.The results showed that the content of chlorophyll a in the overlying water was higher than that in the open water.A large number of algae aggregation and decay reduced the DO concentration of overlying water,reduced the DO concentration of water body to nearly 0 mg·L-1,and formed an anoxic environment.The concentrations of TOC,TN and TP in the overlying water increased significantly,reaching 112.53,8.82 and 1.30 mg·L-1 respectively.The algae aggregation in lakes leads to the decline of water environment quality and intensifies the eutrophication of water body.Therefore,the algal aggregation area in the lake can be regularly salvaged to reduce the thickness of algal accumulation,which can effectively reduce the input of algal derived nutrients and slow down the eutrophication process of water body.
参考文献/References:
参考文献:
[1]STACKPOOLE S M,BUTMAN D E,CLOW D W,et al.Inland waters and their role in the carbon cycle of Alaska[J].Ecological Applications,2017,27(5):1403-1420.
[2]JING Z,CHEN R,WEI S,et al.Response and feedback of C mineralization to P availability driven by soil microorganisms[J].Soil Biology and Biochemistry,2017,105:111-120.
[3]LI X,CUI B,YANG Q,et al.Detritus quality controls macrophyte decomposition under different nutrient concentrations in a Eutrophic Shallow Lake,North China[J].Plos One,2012,7:16-25.
[4]COSTANTINI M L,ROSSI L,FAZI S,et al.Detritus accumulation and decomposition in a coastal lake (Acquatina-southern Italy)[J].Aquatic Conservation-Marine and Freshwater Ecosystems,2009,19:566-574.
[5]李冰,杨桂山,万荣荣.湖泊生态系统健康评价方法研究进展[J].水利水电科技进展,2014,34(6):98-106.
[6]JIANG X,ZHANG L,GAO G,et al.High rates of ammonium recycling in northwestern Lake Taihu and adjacent rivers: An important pathway of nutrient supply in a water column[J].Environmental Pollution,2019,252:1325-1334.
[7]NI Z,WANG S.Historical accumulation and environmental risk of nitrogen and phosphorus in sediments of Erhai Lake,Southwest China[J].Ecological Engineering,2015,79:42-53.
[8]MAROTTA H,PINHO L,GUDASZ C,et al.Greenhouse gas production in low latitude lake sediments responds strongly to warming[J].Nature Climate Change,2014,4(6):467-470.
[9]OLEFELDT D,DEVITO K J,TURETSKY M R.Sources and fate of terrestrial dissolved organic carbon in lakes of a Boreal Plains region recently affected by wildfire[J].Biogeosciences,2013,10(10):6247-6265.
[10]JOSE C C,VICTOR C,CABALLERO S,et al.Chemistry of dry and wet atmospheric deposition over the Balearic Islands,NW Mediterranean: Source apportionment and African dust areas[J].Science of the Total Environment,2020,747:141187.
[11]YE L,WU X,LIU B,et al.Dynamics and sources of dissolved organic carbon during phytoplankton bloom in hypereutrophic Lake Taihu (China)[J].Limnologica,2015,54:5-13.
[12]BANKS L K,FROST P C.Biomass loss and nutrient release from decomposing aquatic macrophytes:Effects of detrital mixing[J].Aquatic Sciences,2017,79:881-890.
[13]ZHANG X H,SUN X X,MAO R.Effects of Litter evenness,nitrogen enrichment and temperature on short-term litter decomposition in freshwater marshes of Northeast China[J].Wetlands,2017,37:145-152.
[14]HUANG C C,ZHANG L L,LI Y M,et al.Carbon and nitrogen burial in a plateau lake during eutrophication and phytoplankton blooms[J].Science of the Total Environment,2018,616:296-304.
[15]YVON D G,HULATT C J,WOODWARD G,et al.Long-term warming amplifies shifts in the carbon cycle of experimental ponds[J].Nature Climate Change,2017,7,209-213.
[16]TRANVIK L J,DOWNING J A,COTNER J B,et al.Lakes and reservoirs as regulators of carbon cycling and climate[J].Limnology and Oceanography,2009,54(6):2298-2314.
[17]MANDY V,SARIAN K,RALF A,et al.Warming enhances sedimentation and decomposition of organic carbon in shallow macrophyte-dominated systems with zero net effect on carbon burial[J].Global Change Biology,2018,24:5231-5242.
[18]RIGOSI A,HANSON P,HAMILTON D P,et al.Determining the probability of cyanobacterial blooms:The application of Bayesian networks inmultiple lake systems[J].Ecological Applications,2016,25(1):186-199.
[19]秦伯强,高光,朱广伟,等.湖泊富营养化及其生态系统响应[J].科学通报,2013,58:855-864.
[20]黄鹤勇.藻类水华聚积分解对嗅味物质产生的影响[D].南京:南京师范大学,2019.
[21]陈小峰,揣小明,杨柳燕.中国典型湖区湖泊富营养化现状、历史演变趋势及成因分析[J].生态与农村环境学报,2014(30):438-443.
[22]李娜,黎佳茜,李国文,等.中国典型湖泊富营养化现状与区域性差异分析[J].水生生物学报,2018,42:854-864.
[23]RAVEH A,AVNIMELECH Y.Total nitrogen analysis in water,soil and plant material with persulphate oxidation[J].Water Research,1979,13(9):911-912.
[24]EBINA J,TSUTSUI T,SHIRAI T.Simultaneous determination of total nitrogen and total phosphorus in water using peroxodisulfate oxidation[J].Water Research,1983,17(12):1721-1726.
[25]LI H,PENG X,CHEN M,et al.Short-term bacterial community composition dynamics in response to accumulation and breakdown of Microcystis blooms[J].Water Research,2011,45(4):1702-1710.
[26]MA J,XU X G,YU C C,et al.Molecular biomarkers reveal co-metabolism effect of organic detritus in eutrophic lacustrine sediments[J].Science of the Total Environment,2020,698:134-144.
[27]CHEN Y,LIN H,YAN W,et al.Alkaline fermentation promotes organics and phosphorus recovery from polyaluminum chloride-enhanced primary sedimentation sludge[J].Bioresource Technology,2019,294:122160. [28]冯伟莹,朱元荣,吴丰昌,等.太湖水体溶解性有机质荧光特征及其来源解析[J].环境科学学报,2016,36(2):475-482.
[29]DAI J H,SUN M Y,CULP R A,et al.A laboratory study on biochemical degradation and microbial utilization of organic matter comprising a marine diatom,land grass,and salt marsh plant in estuarine ecosystems[J].Aquatic Ecology,2009,43(4):825-841.
[30]丰桂珍,董秉直.水中藻类溶解性有机物特性研究[J].环境科学与技术,2016,39(11):144-149.
[31]古励,郭显强,丁昌龙,等.藻源型溶解性有机氮的产生及不同时期藻类有机物的特性[J].中国环境科学,2015(9):2745-2753. [32]李萍.水中氨氮、亚硝酸盐氮及硝酸盐氮相互关系探讨[J].上海环境科学,2006,25(6):245-246.
[33]LIU X R,ZHANG Q W,LI S G,et al.Simulated NH+4-N deposition inhibits CH4 uptake and promotes N2O emission in the meadow steppe of Inner Mongolia,China[J].Pedosphere,2017,27(2):306-317.
备注/Memo
收稿日期:2021-09-07
第一作者:周超(1986-),男,工程师,从事水生态修复研究。E-mail:327635910@qq.com。