SUN Bing,XIAO Ming-gang,CHI Li-yong,et al.Effect of Silicon and Potassium Interaction on Lodging Resistance of Japonica Rice Under Different Nitrogen Gradient[J].HEILONGJIANG AGRICULTURAL SCIENCES,2016,(05):34-40.[doi:10.11942/j.issn1002-2767.2016.05.0034]
不同氮素梯度下硅钾互作对寒地粳稻倒伏抗性的影响
- Title:
- Effect of Silicon and Potassium Interaction on Lodging Resistance of Japonica Rice Under Different Nitrogen Gradient
- 文章编号:
- 1002-2767(2016)05-0034-07
- 分类号:
- S511.062
- 文献标志码:
- A
- 摘要:
- 为在龙江地区粳稻生产中科学合理用肥,降低水稻的倒伏风险,以龙庆稻1号为供试材料,在不同氮肥施入梯度下,研究硅钾肥共同作用对水稻茎秆基部节间结构特征和抗倒伏能力的影响。结果表明:当钾元素单独作用时,钾肥施入量与茎秆I1、I2、I3节间抗折力呈正相关,钾肥施入量为150 kg?hm-2时(N1K2),钾元素利用率最高,I1、I2、I3节间抗折力较对照(N1K0)分别提高9.86%、10.14%、13.24%,当硅元素单独作用时,硅肥施入量与I1、I2茎秆节间抗折力呈显著正相关,对I3节间影响不显著,当硅肥施入量为150 kg?hm-2时(N1S3),对I1、I2节间抗折力提升最为显著,分别较对照(N1S0)提高15.26%、19.69%。氮钾硅肥共同作用时,当氮肥施入量为100 kg?hm-2,N1K3S1的硅钾元素利用率最高,I1、I2节间抗折力较对照分别提高13.43%、26.27%,当氮肥施入量为200、250 kg?hm-2,N2K1S3和N3K1S3的硅钾元素利用率最高,I1、I2节间抗折力较对照分别提高10.72%、12.20%、16.76%、10.43%。
- Abstract:
- In order to use fertilizer scientifically and rationally for the production of japonica rice in longjiang region, and reduce rice lodging risk.Taking Longqingdao 1 as material, the effect of different amounts of potassium and silicon fertilizer on the features of stalk basal internode structure and lodging resistance was studied under the gradient of different nitrogen fertilizer application.The results showed that when the potassium element alone,the amount of K was positively correlated to stem internode resistance of I1,I2 and I3.When the amount of potassium fertilizer was 150 kg?hm-2(N1K2),the utilization rate of potassium was the highest,breaking resistance of basal internode I1, I2 and I3 were increased by 9.86%, 10.14% and 13.24% respectively compared with the control group(N1K0).When the silicon element alone,breaking resistance of basal internode I1 and I2 was positively correlated with silicon fertilizer application amount, no significant effect on I3,when the silicon fertilizer application quantity was 150 kg?hm-2(N1S3),breaking resistance of basal internode I1 and I2 was the most significant improvement, increased 15.26% and 19.69% compared with the control group(N1S0).When the interaction of nitrogen silicon and potassium fertilizer,when the amount of nitrogen fertilizer was 100 kg?hm-2,the highest utilization rate of silicon and potassium was N1K3S1,breaking resistance of basal internode I1 and I2 were increased by 13.43% and 26.27% respectively compared with the control group,when the amount of nitrogen fertilizer was 200 kg?hm-2 and 250 kg?hm-2,the highest utilization rate of silicon and potassium was N2K1S3 and N3K1S3,breaking resistance of basal internode I1 and I2 were increased by 10.72%,12.20%,16.76% and 10.43% respectively compared with the control group.
参考文献/References:
[1]
刘立军,袁莉民,王志琴,等.旱种水稻倒伏生理原因分析与对策的初步研究
[J]
. 中国水稻科学,2002,16(3):225-230. [2]周继勇,肖层林,王仁祥.水稻抗倒性研究进展[J].作物研究,2006(5):388-392. [3]濑古秀生.水稻の倒伏に关すゐ研究[J].九州农试学报,1962(7):419-495. [4]Setter T L, Laureles E V, Mazaredo A M.Lodging reduces yield of rice by self-shading and reductions in canopy photosynthesis[J].Field Crops Research, 1997, 49: 95-106. [5]杨世民, 谢力, 郑顺林,等.氮肥水平和栽插密度对杂交稻茎秆理化特性与抗倒伏性的影响[J].作物学报,2009,35(1):93-103. [6]程式华,胡培松.中国水稻科技发展战略[J].中国水稻科学,2008,22(3): 223-226. [7]莫永生,蔡中全. 水稻株高、基部第二伸长节间茎粗和茎壁厚的初步遗传分析[J]. 植物遗传资源学报,2007,8(1):91-94. [8]肖立, 罗俊英, 陈泽.施氮量和栽插密度对杂交稻金优 527 抗倒伏能力的影响[J].安徽农学通报, 2009,15(9):153-154. [9]陈晓光,石玉华,王成雨,等.氮肥和多效唑对小麦茎秆木质素合成的影响及其与抗倒伏性的关系[J].中国农业科学,2011,44(17):3529-3536.〖ZK)〗 [10]〖ZK(#〗张丰转, 金正勋, 马国辉,等.水稻抗倒性与茎秆形态性状和化学成分含量间相关分析[J].作物杂志,2010(4):15-19. [11]广华容,邓达胜,杨成明等.杂交中籼新组合Ⅱ优838[J].杂交水稻,1996(5):31. [12]申广勒, 石英尧, 黄艳玲,等.水稻抗倒伏特性及其与茎秆性状的相关性研究[J].中国农业科学,2007,23(12):58-62. [13]梁康迳,林文雄,王雪仁,等.水稻茎秆抗倒性的遗传及基因型×环境互作效应研究[J].福建农业学报,2000,15(3):9-15. [14]关伟, 钱晓刚.超级杂交稻茎秆形态与抗倒伏相关性研究[J].耕作与栽培, 2008(2):10-12. [15]Berzonsky W A,Hawk J A,Pizzolato T D,et al.Anatomical characteristics of three inbred linedand two maize synthetics recurrently selected for hish and low stalk crashing strengthen[J].Crop Science,1986,26: 482-488. [16]雷小龙,刘利,刘波,等.杂交籼稻F优498机械化种植的茎秆理化性质与抗倒伏性[J].中国水稻科学,2014,28(6):612-620. [17]Hirano K,Okuno A,Hobo T,et al. Utilization ofstiff culm trait of rice smos1 mutant for increased lodging resistance[J].Plos One,2014,9(7):1-9. [18]Islam M S, Peng S B, Visperas R M,et al.Lodging-related morphological traits of hybrid rice in a tropical irrigated ecosystem[J].Field Crops Research, 2007, 101:240-248. [19]Duan C N,Wang B C,Wang P Q,et al.Relationshipbetween the minute structure and the lodging resistance of rice stems[J]. Colloids and Surfaces B: Biointerfaces,2004,35(3/4):155-158. [20]Zhang J E,Quan G M,Huang Z X,et al. Evidenceof duck activity induced anatomical structure change and lodging resistance of rice plant[J].Agroecology and Sustainable Food Systems,2013,37(9):975-984. [20]刘立军,袁莉民,王志琴,等. 旱种水稻倒伏生理原因分析与对策的初步研究[J]. 中国水稻科学,2002,16(3) : 225-230. [22]Zhang J,Li G H,Song Y P,et al.Lodging resistance characteristics of high-yielding rice populations[J].Field Crops Research,2014,161(5):64-74. [23]王秀凤, 党立华, 都华,等.水稻茎秆抗倒性构成因素的研究[J].北方水稻, 2008, 38(2):16-21, 39. [24]黄增奎.小麦施钾的抗倒伏效应[J].土壤通报,1989(3):122-123. [26]张忠旭,陈温福,杨振玉,等. 水稻抗倒伏能力与茎秆物理性状的关系及其对产量的影响[J].沈阳农业大学学报,1999,30(2):81-85. [27]彭少兵,黄见良,钟旭华,等.提高中国稻田氮肥利用率的研究策略[J].中国农业科学,2002,35(9):1095-1103. [28]郭玉华, 朱四光, 张龙步.不同栽培条件对水稻茎秆生化成分的影响[J].沈阳农业大学学报, 2003, 34(2):89-91. [29]游晴如,马宏敏,杨东,等.水稻倒伏性研究进展[J]. 安徽农学通报,2007,13(6):84-86.
相似文献/References:
[1]迟莉.11%多·咪·福美双悬浮种衣剂防治水稻恶苗病田间药效试验[J].黑龙江农业科学,2013,(02):59.
CHI LI.The Field Efficacy Trial of 11% Carbendazim?Prochloraz?Thiram FSC to Prevent Rice Bakanae Disease[J].HEILONGJIANG AGRICULTURAL SCIENCES,2013,(05):59.
[2]王玉洋,蒋柳青,董雪梅,等. 不同因素对水稻愈伤组织形成的影响[J].黑龙江农业科学,2013,(01):11.
WANGYu-yang,JIANGLiu-qing,DONGXue-mei,et al.EffectofDifferentFactorsonRiceCallusFormation[J].HEILONGJIANG AGRICULTURAL SCIENCES,2013,(05):11.
[3]丁佳红,薛正莲,杨超英. 水杨酸对铜胁迫下水稻幼苗膜脂过氧化作用的影响[J].黑龙江农业科学,2013,(01):14.
DINGJia-hong,XUEZheng-lian,YANGChao-ying.EffectofSalicylicAcidonMembraneLipidPeroxidationinRiceSeedlingsunderCopperStress[J].HEILONGJIANG AGRICULTURAL SCIENCES,2013,(05):14.
[4]王岩成,胡焕春,岳萍. 一定体积的水稻种子间隙吸水量的定量试验[J].黑龙江农业科学,2013,(01):27.
WANGYan-cheng,HUHuan-chun,YUEPing.QuantitativeTestofRiceSeedsGapWaterAbsorptionofCertainVolume[J].HEILONGJIANG AGRICULTURAL SCIENCES,2013,(05):27.
[5]解忠.不同温度对水稻灌浆期籽粒淀粉关键酶活性及稻米品质的影响[J].黑龙江农业科学,2014,(07):32.
XIE Zhong.Effect of Different Temperature on Grain Starch Key Enzyme Activity and Rice Quality at Filling Stage[J].HEILONGJIANG AGRICULTURAL SCIENCES,2014,(05):32.
[6]张智杰.牡丹江地区水稻生产现状及发展趋势[J].黑龙江农业科学,2014,(07):144.
ZHANG Zhi-jie.Present Situation and Development Trends of Rice Production in Mudanjiang Region[J].HEILONGJIANG AGRICULTURAL SCIENCES,2014,(05):144.
[7]张智杰.水稻粒形性状的QTL分析[J].黑龙江农业科学,2014,(06):15.
LIN Hong,SUN Dequan,LI Suiyan,et al.Evaluation on Induction Rate of Maize Haploid Derived ?Lines for Different Groups F1[J].HEILONGJIANG AGRICULTURAL SCIENCES,2014,(05):15.
[8]曾宪国,项洪涛,王立志,等.孕穗期不同低温对水稻空壳率的影响[J].黑龙江农业科学,2014,(06):19.
ZENG Xianguo,XIANG Hongtao,WANG Lizhi,et al.Effect of Different Low Temperature on the Percentage of Rice Unfilled Grains in Booting Stage[J].HEILONGJIANG AGRICULTURAL SCIENCES,2014,(05):19.
[9]白 雪,郑桂萍,王宏宇,等.寒地水稻侧深施肥效果的研究[J].黑龙江农业科学,2014,(06):40.
BAI Xue,ZHENG Guiping,WANG Hongyu,et al.Research on the Effect of Side and Deep Fertilizing for Rice in Cold Region[J].HEILONGJIANG AGRICULTURAL SCIENCES,2014,(05):40.
[10]王晓东,王茂青,王红霞.寒地水稻种质资源产量构成因素与产量的关系研究[J].黑龙江农业科学,2014,(06):5.
WANG Xiao-dong,WANG Mao-qing,WANG Hong-xia.Analysis on the Relationship Between Yield Components and Yield of Rice Germplasm in Cold Region[J].HEILONGJIANG AGRICULTURAL SCIENCES,2014,(05):5.
备注/Memo
收稿日期:2016-04-11