ZHENG Kexin,ZHANG Xiyu,ZHANG Qing.Remote Sensing of Cultivated Land Quality in Hailun from 1985 to 2020[J].HEILONGJIANG AGRICULTURAL SCIENCES,2024,(01):29-36.[doi:10.11942/j.issn1002-2767.2024.01.0029]
1985-2020年海伦市耕地质量遥感监测与空间格局变化分析
- Title:
- Remote Sensing of Cultivated Land Quality in Hailun from 1985 to 2020
- 文章编号:
- 6
- Keywords:
- cultivated land quality; remote sensing; soil; cultivated land; spatial pattern
- 文献标志码:
- A
- 摘要:
- 耕地数量和质量变化直接关系到国家粮食安全,海伦市是中厚层典型黑土区,是黑龙江省重要的商品粮食县。为了揭示东北典型黑土示范区海伦市耕地质量时空变化特征,本研究利用Landsat 系列卫星遥感影像进行每五年为一期,共8期的长时序分析,建立基于压力-状态-响应模型(Pressure-State-Response,PSR)的耕地质量评价方法,运用层次分析法为各评价指标赋予权重,结合专家评分与线性内插法实现评价因子的定量评价,最终将各评价因子进行空间权重叠加获得1985-2020年海伦市耕地质量评价结果。结果表明,海伦市1985年耕地质量优于其他年份,一级、二级和三级耕地面积减少,五级耕地面积明显增加;海伦市东部耕地质量高于西部,1985-2020年四级、五级耕地主要分布在西南部以及中部地区的部分区域;1985-2020年一级、二级耕地集中分布在东部及双录乡附近;本研究将遥感技术引入耕地质量评价中,合理揭示了其时空变化特征,为该区域今后耕地质量提升工作指明了方向, 对今后进一步可持续利用和管理黑土地具有积极意义。
- Abstract:
- The change of the quantity and quality of cultivated land is directly related to the national food security. Hailun City is a typical black soil area in the middle and thick layer, and is an important commodity grain county in Heilongjiang Province. In order to reveal the spatio-temporal variation characteristics of cultivated land quality in Hailun City, a typical black soil demonstration area in Northeast China, in this study, the remote sensing images of Landsat series satellites were used to conduct a long time series analysis of eight periods every five years, and a cultivated land quality evaluation method based on Pressure-State-Response (PSR) model was established. The analytic hierarchy process was applied to assign weights to each evaluation index. The quantitative evaluation of the evaluation factors was realized by combining the expert score and linear interpolation method. Finally, the spatial weight of each evaluation factor was superimposed to obtain the evaluation results of cultivated land quality in Hailun City from 1985 to 2020. The results showed that the quality of cultivated land in Hailun City in 1985 was better than that in other years, the area of cultivated land in Grade 1, 2 and 3 decreased, and the area of cultivated land in grade 5 increased significantly. The quality of cultivated land in the eastern part of Hailun City was higher than that in the western part. From 1985 to 2020, the Grade 4 and 5 cultivated land was mainly distributed in the southwest and part of the central region. From 1985 to 2020, the primary and secondary cultivated land will be concentrated in the east and near Shuanglu Township. In this study, remote sensing technology was introduced into cultivated land quality evaluation, and the spatio-temporal variation characteristics were reasonably revealed, which pointed out the direction for the improvement of cultivated land quality in the region in the future, and had positive significance for the further sustainable utilization and management of black land in the future.
参考文献/References:
[1]王来刚,郭燕,贺佳,等.遥感数据辅助下县域耕地质量评价与空间分布研究[J].中国农业资源与区划,2022,43(12):137-146.[2]中华人民共和国自然资源部.2016 中国国土资源公报[EB/OL].(2017-08-02)[2023-01-06].http://cn.chinagate.cn/reports/2017/08/02/content_41332031.htm,2017.[3]郑皓洋,李婷婷,黄颖利.中国黑土区耕地利用效益评价及问题诊断:基于粮食安全与黑土保护双重背景[J].中国农业大学学报,2023,28(11):29-41.[4]中国科学院.东北黑土地白皮书(2020)[EB/OL].(2021-07-09)[2023-01-06].http://std.cas.cn/ywzgzdt/202107/W020210712377288257597.pdf.[5]孙佑海.为黑土地保护提供有力法律保障:《黑土地保护法》解读[J].环境保护,2022,50(16):39-44.[6]WANG X,WANG L P,LI S J,et al.Remote estimates of soil organic carbon using multi-temporal synthetic images and the probability hybrid model[J].Geoderma,2022,425:116066.[7]宋恒飞,吴克宁,李婷,等.寒地黑土典型县域土壤重金属空间分布及影响因素分析:以海伦市为例[J].土壤通报,2018,49(6):1480-1486.[8]姜佩林.基于遥感的典型黑土区作物种植结构变化分析[D].哈尔滨:东北农业大学,2019.[9]温良友,孔祥斌,张蚌蚌,等.基于可持续发展需求的耕地质量评价体系构建与应用[J].农业工程学报,2019,35(10):234-242.[10]〖ZK(#〗王建华,陶培峰,袁月,等.PSR 框架下的黑龙江省海伦市耕地质量评价[J].地质与资源,2020,29(6):525-532.[11]马佳妮,张超,吕雅慧,等.基于长时间序列遥感数据反演 NPP 的耕地质量评价[J].农业机械学报,2019,50(1):202-208.[12]曲衍波,朱伟亚,郧文聚,等.基于压力-状态-响应模型的土地整治空间格局及障碍诊断[J].农业工程学报,2017,33(3):241-249.[13]叶云,赵小娟,胡月明.基于 GA-BP 神经网络的珠三角耕地质量评价[J].生态环境学报,2018,27(5):964-973.[14]唐宗,周悟,杨颢,等.基于交互效应 Logistic 回归模型的耕地质量评价方法研究[J].生态环境学报,2020,29(12):2394-2403.[15]卫新东,王筛妮,员学锋,等.基于耕地分等和 PSR 模型的耕地质量生态安全评价[C]//土地管理创新与生态文明建设:2017年中国土地学会学术年会论文集.宁波,2017:101-110.[16]YANG J,HUANG X.The 30 m annual land cover dataset and its dynamics in China from 1990 to 2019[J].Earth System Science Data,2021,13(8):3907-3925.[17]赵倩.农田排水系统对典型坡耕地水土流失的影响[D].哈尔滨:东北农业大学,2023.[18]赵龙山,侯瑞,吴发启,等.坡度对农业耕作措施水土保持作用的影响[J].水土保持学报,2017,31(3):69-72,78.[19]郑艺颖,杨小雄,何启源.基于 PSR 框架的耕地资源质量评价:以广西桂平市为例[J].安徽农业科学,2017,45(35):193-197.[20]张辉.基于多源遥感数据的内蒙古植被长势变化监测及其气候影响要素研究[D].南京:南京信息工程大学,2022.[21]邢华铭.土壤成分与特性参数光谱快速检测方法及传感技术[J].农业与技术,2017,37(23):35,51.[22]郑淼,王翔,李思佳,等.黑土区土壤有机质和全氮含量遥感反演研究[J].地理科学,2022,42(8):1336-1347.[23]陈万旭,曾杰.中国土地利用程度与生态系统服务强度脱钩分析[J].自然资源学报,2021,36(11):2853-2864.[24]侯淑涛,王烁,王轶昂,等.黑土区坡耕地土壤水分时空分布特征及对降雨的响应[J].河南农业科学,2023,52(1):61-72.[25]刘泽瑾,焦利民,连喜红.1995-2020年气候变化和耕地利用变化对中国耕地气候生产潜力的影响分析[J].中国土地科学,2022,36(3):62-73.[26]赵紫远,方海燕,武亚冰,等.坡形对黑土区坡耕地土壤侵蚀的模型模拟研究[J].水土保持学报,2022,36(6):23-29,40.[27]杨琳,刘万波,刘洁.基于 PSR 模型的黑龙江垦区土地生态安全评价[J].北方农业学报,2022,50(1):125-134.[28]姜芸,王军,杨继文.基于遥感技术的黑土区耕地质量评价指标体系研究进展分析[J].测绘工程,2023,32(1):1-7,13.[29]周飞,许熔熔,陈余平,等.余姚市耕地土壤养分状况及其变化特征研究[J].江西农业学报,2022,34(7):117-121.[30]袁零,杨庆媛.基于 PSR 框架的甘肃省环县耕地生态安全评价[J].西南师范大学学报(自然科学版),2019,44(6):60-68.[31]马哲煜.吉林省土地生态安全评价与预警分析研究[D].重庆: 西南大学,2020.[32]蒲晨曦.玉米主产区玉米化肥投入效率测度及影响因素研究[D].哈尔滨: 东北农业大学,2019.
相似文献/References:
[1]张国庆,黄 楠,宋 茜,等.利用多源多时相卫星影像对黑龙江省耕地水涝灾害的监测[J].黑龙江农业科学,2014,(06):127.
ZHANG Guoqing,HUANG Nan,SONG Qian,et al.Monitor of the Farmland Waterlogging Disaster in Heilongjiang Province with Multi source and Multi temporal Satellite Images[J].HEILONGJIANG AGRICULTURAL SCIENCES,2014,(01):127.
[2]张有智.基于遥感技术的水稻抽穗期长势分级监测研究[J].黑龙江农业科学,2012,(05):142.
ZHANG You-zhi.Monitoring on Rice Growth in Heading Stage Basedon Remote Sensing Technology[J].HEILONGJIANG AGRICULTURAL SCIENCES,2012,(01):142.
[3]辛 蕊,刘 洋,付 斌,等.遥感技术在黑龙江省大豆种植面积监测中的应用[J].黑龙江农业科学,2011,(01):122.
XIN Rui,LIU Yang,FU Bin,et al.Application of Remote Sensing Technology in Monitoring SoybeanPlanting Area in Heilongjiang Province[J].HEILONGJIANG AGRICULTURAL SCIENCES,2011,(01):122.
[4]吴 黎,张有智.,解文欢,等.遥感图像分类中混合像元分解方法研究[J].黑龙江农业科学,2011,(09):139.
WU Li,ZHANG You-zhi.,XIE Wen-huan,et al.Classification Methods of Unmixing Based onRemote Sensing Image Classification[J].HEILONGJIANG AGRICULTURAL SCIENCES,2011,(01):139.
[5]张冬梅.草原遥感图像常规解译方法及存在问题[J].黑龙江农业科学,2010,(09):166.
ZHANG Dong-mei.Conventional Method and Problems of Remote Sensing Imagery Interpretation on Grassland[J].HEILONGJIANG AGRICULTURAL SCIENCES,2010,(01):166.
[6]黄 楠,莫 红,张国庆.基于TM数据的黑龙江省西部地区草场荒漠化变化趋势研究[J].黑龙江农业科学,2010,(09):169.
HUANG Nan,MO Hong,ZHANG Guo-qing.Research on the Trend of Pasture Desertification inWestern Region of Heilongjiang Province Based on TM Data[J].HEILONGJIANG AGRICULTURAL SCIENCES,2010,(01):169.
[7]刘印锋.烤烟波谱特性的分析与识别[J].黑龙江农业科学,2010,(03):96.
LIU Yin-feng.Analysis and Identification of Flue-cured Tobacco’s Spectrum Characteristic of F;ue-cured Tobacco[J].HEILONGJIANG AGRICULTURAL SCIENCES,2010,(01):96.
[8]陆忠军.黑龙江省主要粮食作物总产预报系统 构建方法的探讨[J].黑龙江农业科学,2010,(08):147.
LU Zhong-jun.Constructing Methods of the Predicting System of Yield of Chief Grain Crop in Heilongjiang Province[J].HEILONGJIANG AGRICULTURAL SCIENCES,2010,(01):147.
[9]刘柏静,叶长青.广州市绿地景观空间特征评价与规划对策[J].黑龙江农业科学,2014,(10):95.
LIU Bai-jing,YE Chang-qing.Comprehensive Assessment of Spatial Characteristics of Urban Greenbelt Landscapes and Planning Strategies in Guangzhou City[J].HEILONGJIANG AGRICULTURAL SCIENCES,2014,(01):95.
[10]张国庆.数字农业农田信息系统的建立[J].黑龙江农业科学,2007,(02):98.[doi:10.11942/j.issn1002-2767.2007.02.0098]
ZHANGGuo-qing.Establishment of Farmland Informational System of Digital Agriculture[J].HEILONGJIANG AGRICULTURAL SCIENCES,2007,(01):98.[doi:10.11942/j.issn1002-2767.2007.02.0098]
备注/Memo
收稿日期:2023-09-25