ZHANG Jiamin,HE Jun,GAO Fudong,et al.Extraction of Farmland Shelter Forest in Qingtongxia City of Ningxia Based on Landsat8 Time Series[J].HEILONGJIANG AGRICULTURAL SCIENCES,2024,(01):23-28.[doi:10.11942/j.issn1002-2767.2024.01.0023]
基于Landsat8时间序列的宁夏青铜峡市农田防护林提取
- Title:
- Extraction of Farmland Shelter Forest in Qingtongxia City of Ningxia Based on Landsat8 Time Series
- 文章编号:
- 5
- 关键词:
- 多时序遥感影像; 青铜峡市; 物候特征; 农田防护林; Landsat8 OLI
- Keywords:
- multi-temporal remote sensing images; Qingtongxia City; phenological characteristics; field safeguarding forest; Landsat8 OLI
- 文献标志码:
- A
- 摘要:
- 农田防护林在西北多风沙地区发挥了重要防护作用,为农作物提供了良好的生长环境。为了解农田防护林的空间分布特征,需要对防护林进行有效提取,采用中低分辨率遥感数据进行农田防护林提取成为重要途径。以宁夏青铜峡市农田防护林为研究对象,在2019年影像中选取7期可以代表4个季度地物特征的Landsat8 OLI影像数据,在影像预处理基础上,融入水体指数、植被特征和植被指数,提取植被的物候特征,掩膜去除研究区内其他地物,从而实现农田防护林的提取。同时利用野外调查结果和土地利用数据对提取结果进行精度评价。结果表明,该方法防护林提取的总体精度为85.16%,野外调查的50个采样点中有44个点被准确提取,精度达到88.00%。青铜峡市农田防护林多以林带的形式呈现,林带主要沿排水沟分布。
- Abstract:
- Farmland shelter forest plays an important role in protecting the northwest windy and sandy areas and provides a good growth environment for crops. To understand the spatial distribution characteristics of farmland shelterbelt, it is necessary to extract the shelter forest effectively. It is an important way to extract the farmland shelter forest by using the medium and low-resolution remote sensing data.In this study, farmland shelterbelt in Qingtongxia City, Ningxia as the research object. In the 2019 image, seven periods of Landsat8 OLI image data which can represent the characteristics of four quarters were selected to reconstruct the time series curve. On the basis of image preprocessing, water body index, vegetation characteristics and vegetation index were integrated, the phenological characteristics of vegetation were extracted, and other features in the study area were removed by mask, in order to achieve the extraction of farmland shelterbelt. At the same time, the accuracy of the extraction results is evaluated by using the field survey results and land use data.The results showed that, the overall accuracy of shelter forest extractionwas 85.16%, and 44 out of 50 sampling sites were accurately extracted with 88.00% accuracy. Farmland shelterbelts in Qingtongxia City are mostly presented in the form of forest belts, which are mainly distributed along drainage ditches.
参考文献/References:
[1]BRANDLE J R,HODGES L,ZHOU X H.Windbreaks in North American agricultural systems[J].Agroforestry Systems,2004,61(1):65-78.[2]姜凤岐,周新华,付梦华,等.林带疏透度模型及其应用[J].应用生态学报,1994,5(3):251-255.[3]ZHAN K J,LIU S Z,YANG Z H,et al.Effects of sand-fixing and windbreak forests on wind flow:a synthesis of results from field experiments and numerical simulations[J].Journal of Arid Land,2017,9(1):1-12.[4]ZHANG 〖JP+4〗W,WANG B J,GAN Y W,et al.Competitive interaction in jujube tree/cotton agroforestry system in Xinjiang Province,Northwestern China[J].Agroforestry Systems,2019,93(2):591-605.[5]聂哲.区域尺度农田防护林的气候效应及对农作物增产机制的研究[D].沈阳:沈阳农业大学,2020.[6]KANZLER M,BHM C,MIRCK J,et al.Microclimate effects on evaporation and winter wheat (Triticum aestivumL.) yield within a temperate agroforestry system[J].Agroforestry Systems,2019,93(5):1821-1841.[7]宁亮亮,张晓丽.基于纹理信息的Landsat-8影像植被分类初探[J].中南林业科技大学学报,2014,34(9):60-64.[8]郭昱杉,刘庆生,刘高焕,等.基于MODIS时序NDVI主要农作物种植信息提取研究[J].自然资源学报,2017,32(10):1808-1818.[9]幸泽峰,李颖,邓荣鑫,等.基于ZY-3影像的农田防护林自动提取[J].林业科学,2016,52(4):11-20.[10]凌成星,刘华,纪平,等.基于无人机影像VDVI指数的植被覆盖度估算:以陕西神木防护林工程研究区为例[J].森林工程,2021,37(2):57-66.[11]申丽娜,孙艳玲,杨艳丽,等.基于NDVI的三北防护林工程区植被覆盖度变化图谱特征[J].环境科学与技术,2017,40(4):70-77,106.[12]郭海涛,张保明,徐青.一种从遥感影像中自动提取线状目标的方法[J].信息工程大学学报,2004,5(4):83-88.[13]王文娟,邓荣鑫,李颖,等.TM与SPOT5数据对农田防护林景观评价影响的对比分析[J].东北林业大学学报,2011,39(9):54-56.[14]刘新宇,刘洋.面向对象的高分影像房屋提取方法对比分析[J].网络安全技术与应用,2020(9):35-38.[15]BOSE P,KASABOV N K,BRUZZONE L,et al.Spiking 〖JP4〗neural networks for crop yield estimation based on spatiotemporal analysis of image time series[J].IEEE Transactions on Geoscience and Remote Sensing,2016,54(11):6563-6573.[16]周佳玮,涂理林,陈洪建,等.融合空间和时序遥感信息的深度学习水稻提取[J].地理空间信息,2022,20(2):39-44.[17]陈健,刘云慧,宇振荣.基于时序MODIS-EVI数据的冬小麦种植信息提取[J].中国农学通报,2011,27(1):446-450.[18]平跃鹏,臧淑英.基于MODIS时间序列及物候特征的农作物分类[J].自然资源学报,2016,31(3):503-513.[19]雷思君,孙华,刘华,等.Landsat8时间序列影像支持下的农田防护林提取方法研究[J].中南林业科技大学学报,2020,40(4):57-63.[20]叶衍昌,赵东红,李小娟.高斯平滑算子对Y-K模型改进的图像去噪方法[J].软件导刊,2013,12(11):161-164.[21]蔡银珊,黄英铭.基于P&M模型的图像去噪平滑处理算法[J].计算机仿真,2011,28(8):256-258,279.[22]王学文,赵庆展,田文忠,等.U-Net模型对不同空间分辨率防护林提取精度的影响[J].测绘通报,2021(6):39-43.[23]吕雅慧,张超,郧文聚,等.高分辨率遥感影像农田林网自动识别[J].农业机械学报,2018,49(1):157-163.
备注/Memo
收稿日期:2023-09-15