LIU Feng,HUANG Qinyu,CHEN Yanwu.Adsorption of Pb(Ⅱ) by Soybean ProteinBased Porous Gel Spheres[J].HEILONGJIANG AGRICULTURAL SCIENCES,2023,(11):100-107.[doi:10.11942/j.issn1002-2767.2023.11.0100]
大豆蛋白基多孔凝胶球对Pb(Ⅱ)的吸附研究
- Title:
- Adsorption of Pb(Ⅱ) by Soybean ProteinBased Porous Gel Spheres
- 文章编号:
- 18
- Keywords:
- soybean protein; sodium alginate; porous; Pb; adsorption
- 文献标志码:
- A
- 摘要:
- 为了解决工业废水铅Pb(Ⅱ)污染问题,以海藻酸钠和大豆蛋白为原料,制备了具有多孔结构的大豆蛋白基多孔凝胶球,并用于对模拟废水Pb(Ⅱ)的去除研究。利用扫描电子显微镜(SEM)、比表面积及孔隙分析仪、Zeta电位仪和X射线光电子能谱(XPS)对多孔凝胶球的形貌、多孔结构、表面电荷和元素组成进行了表征,并探讨了溶液pH、吸附时间、吸附剂用量、铅离子初始浓度等因素对大豆蛋白基多孔凝胶球吸附Pb(Ⅱ)的吸附容量和脱除效率的影响。结果表明,在pH>2.9的条件下,大豆蛋白基多孔凝胶球表面带负电,能够通过凝胶球内部的多孔通道上的吸附位点有效地吸附带正电的Pb(Ⅱ)离子,最高脱除效率可达99%,能循环使用。通过对吸附数据进行3种动力学模型(准一级动力学、准二级动力学和颗粒内扩散模型)和两种等温模型(Langmuir和Freundlich模型)的拟合分析,发现吸附过程符合准二级动力学模型,且遵循Langmuir单分子层吸附机制,最大吸附容量为264.01mg ·g -1。表明,大豆蛋白基多孔凝胶球能对模拟废水中的Pb(Ⅱ)进行高效吸附。
- Abstract:
- In order to solve the problem of Pb (Ⅱ) pollution in industrial wastewater, soybean protein based porous gel beads with porous structure were prepared using sodium alginate and soybean protein as raw materials〗, and were used to remove Pb (Ⅱ) from simulated wastewater. The morphology, porous structure, surface charge and element composition of porous gel beads were characterized by scanning electron microscope (SEM), specific surface area and porosity analyzer, zeta potentiometers and x-ray photoelectron spectroscopy (XPS). The effects of solution pH, adsorption time, amount of adsorbent, initial concentration of lead ion and other factors on the adsorption capacity and removal efficiency of Pb (Ⅱ) on soy protein based porous gel spheres were also discussed.The results showed that under the condition of pH>2.9, the surface of soybean protein based porous gel bead was negatively charged, which could effectively absorb positively charged Pb (Ⅱ) ions through the adsorption sites on the porous channels inside the gel bead. The highest removal rate was 99%, which could be recycled. Through fitting analysis of three kinetic models (quasi first order kinetics, quasi second order kinetics and intra particle Diffusion model) and two isothermal models (Langmuir and Freundlich models) for the adsorption data, it was found that the adsorption process conforms to the quasi second order kinetic model and follows the Langmuir monolayer adsorption mechanism, and the maximum adsorption capacity was 264.01 mg·g-1. The above results show that soybean protein based porous gel beads can efficiently adsorb Pb (Ⅱ) in simulated wastewater.
参考文献/References:
[1]张朝晖.7月1日起施行《电子工业水污染防治可行技术指南》发布[J].水处理技术,2023,49(7):12.[2]王磊,白成玲,朱振亚.氧化石墨烯/海藻酸钠复合膜对Pb(Ⅱ)的吸附性能和机制[J].复合材料学报,2020,37(3):681-689.[3]韩佳益,王雨阳,赵庆杰,等.不同腐解阶段羊粪与海藻有机肥对Pb(Ⅱ)的吸附[J].农业环境科学学报,2021,40(9):1904-1914.[4]江辉,王荣忠,黄丹莲,等.半胱氨酸改性Fe3O4纳米材料对Pb(Ⅱ)的吸附研究[J].环境污染与防治,2019,41(2):191-195.[5]CHEN 〖KG(0.3mm〗L F,LIANG H W,LU Y,et al.Synthesis 〖KG)〗of an attapulgite clay@carbon nanocomposite adsorbent by a hydrothermal carbonization process and their application in the removal of toxic metal ions from water[J].Langmuir,2011,27(14):8998-9004.[6]李辉,江群,姜思盟,等.掺Fe(Ⅱ)羟基磷灰石对水溶液中Pb(Ⅱ)吸附性能研究[J].农业资源与环境学报,2022,39(4):698-706.[7]李宸,鲁镜镜,蒙梅,等.醇胺钛酸酯改性磁化赤泥对Pb(Ⅱ)的吸附性能研究[J].硅酸盐通报,2022,41(2):625-633.[8]陈彦广,孙杰,吴晓辉,等.钴掺杂NaP分子筛合成及其吸附Pb(Ⅱ)性能[J].硅酸盐通报,2021,40(2):653-657.[9]韩承辉,谢伟芳.可渗透反应墙结合CoFe2O4/GO纳米复合材料去除模拟废水中Pb(Ⅱ)及其吸附机理研究[J].有色金属工程,2020,10(6):120-128.[10]吴桂萍,郑波,赵玉凤,等.响应面分析法优化高分子重金属捕捉剂处理高浓度含汞溶液[J].中南民族大学学报(自然科学版),2017,36(3):18-21.[11]曾毅夫,刘君,邱敬贤,等.电化学法处理含重金属电镀废水研究[J].再生资源与循环经济,2018,11(6):42-44.[12]曹晓磊,盛宇星.生物法处理含硫酸盐重金属废水的研究进展[J].环境科学与技术,2015,38(S2):181-185.[13]胡智涛.吸附法处理重金属废水污染的研究进展[J].当代化工研究,2023,132(7):21-23.[14]朱建华,舒家才,黄鑫怡,等.聚烯丙基氯化铵调控的中空多孔磷酸八钙超结构及其对Pb(Ⅱ)的吸附特性[J].环境科学学报,2021,41(6):2147-2155.[15]周智芳,张有贤,赵佰平,等.多孔蒙脱土的制备及对Pb(Ⅱ)吸附特性研究[J].重庆大学学报,2019,42(7):79-87.[16]郭春芳.膨润土对Pb(Ⅱ)吸附机理的研究探讨[J].工业水处理,2019,39(10):66-69.[17]谢新玲,黄婕,张友全,等.改性磁性木薯渣微球的制备及对Pb(Ⅱ)的吸附[J].化工新型材料,2019,47(8):158-162.[18]燕翔,王都留,张少飞,等.改性核桃壳生物炭的制备及其对Pb(Ⅱ)的吸附研究[J].中国有色冶金,2022,51(2):125-131.[19]毕景望,单锐,韩静,等.改性西瓜皮生物炭的制备及其对Pb(Ⅱ)的吸附特性[J].环境科学,2020,41(4):1770-1778.[20]高亮,李志合,易维明,等.棉秆生物炭去除水中Pb(Ⅱ)吸附机理的量化分析[J].农业工程学报,2022,38(3):230-238.[21]王自杰,杨晓贺,邱磊,等.刈号微量元素水溶肥对大豆和玉米农艺性状及产量的影响[J].黑龙江农业科学,2023(7):30-34,46.[22]姚梦楠,周恩强,周瑶,等.高产优质夏大豆新品种通豆13的选育及栽培[J].黑龙江农业科学,2023(3):125-128.[23]周长军,吴耀坤,于吉东,等.东北地区大豆种质资源对SCN3抗性表型评价[J].黑龙江农业科学,2023(7):47-51.[24]LIU D,LI Z,LI W,et al.Adsorption behavior of heavy metal ions from aqueous solution by soy protein hollow microspheres[J].Industrial & Engineering Chemistry Research,2013,52(32):11036-11044.[25]3〗LIU J,SU D,YAO J,et al.Soy protein-based polyethylenimine hydrogel and its high selectivity for copper ion removal in wastewater treatment[J].Journal of Materials Chemistry A,2017,5(8):4163-4171.[26]刘锋,陈雪怡,邹海良,等.大豆蛋白负载魔芋葡甘聚糖对Cd(Ⅱ)的吸附性能[J].化工进展,2016,35(8):2592-2597.[27]陈云,罗丽花,周紫燕,等.海藻酸钠/大豆蛋白共混凝胶微球的结构[J].武汉大学学报(理学版),2006(4):396-400.[28]THOMMES M,KANEKO K,NEIMARK A V,et al.Physisorption of gases,with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical report)[J].Pure and Applied Chemistry,2015,87(9-10):1051-1069.[29]刘锋,陈燕舞,邹展珊,等.大豆蛋白基复合凝胶球对亚甲基蓝的吸附研究[J].林产工业,2023,60(9):24-30.[30]龙昊宇,黄彬彬,翁白莎,等.MnO2@Fe3O4/石墨烯复合材料对水中Pb(Ⅱ)的吸附[J].中国环境科学,2020,40(7):2888-2900.[31]刘锋,霍应鹏,陈燕舞,等.聚多巴胺改性交联魔芋葡甘聚糖对Pb(Ⅱ)的吸附性能研究[J].林产工业,2021,58(12):78-83.[32]LIU F,YANG Q,TANG Q,et al.Adsorption of RhB dye on soy protein isolate-based double network spheres:compromise between the removal efficiency and the mechanical strength〗、[J].Chemical Engineering Research and Design,2023,193:268-280.[33]LIU F,ZOU H,PENG J,et al.Removal of copper (II) using deacetylated konjac glucomannan conjugated soy protein isolate[J].International Journal of Biological Macromolecules,2016,86(1):338-344.[34]LIU F,LONG Q,GAO N,et al.Effective adsorption of tannic acid by porous dual crosslinked soy protein isolate-alginate hybrid spheres from aqueous solution[J].Chemical Engineering Research and Design,2023,189:250-261.[35]LIU F,LUO X,LIN X.Adsorption of tannin from aqueous solution by deacetylated konjac glucomannan[J].Journal of Hazardous Materials,2010,178(1-3):844-850.
备注/Memo
收稿日期:2023-07-10