关于我国淡水富营养水体修复植物研究的分析

宋 恒1,杨 猛2,徐恒戬2

(1. 山东理工大学 能源管理中心,山东 淄博 255049; 2. 山东理工大学 生命科学学院,山东 淄博 255049)

摘要:为进一步进行水体修复工程的研究,对近几年来我国利用植物水体进行修复的研究状况进行了分析总结, 重点关注应用于水体修复的植物种类,梳理了常见的应用植物,归纳了使用频率较高的植物。结果表明,被子植 物在水体修复研究中占绝对主导地位,其中,单子叶植物多于双子叶植物。

关键词:水体富营养;修复;植物;分析

中图分类号:Q948.1 文献标识码:A 文章编号:1002-2767(2014)12-0107-04

我国水体污染严重而且普遍,除了特定工业废 水污染外,通常水体呈现富营养特点,水体的富营 养易于导致藻类植物暴发,产生水化,严重者导致 水生动物的死亡和水体变臭等后果,使水环境遭到 严重破坏,特别是在城市水体中,影响景观和居民 的生活质量。我国淡水的富营养化主要因子是总 氮、总磷、铵态氮及高锰酸钾指数等方面。 为了解 决水体污染,小型水体工程每年会动用人工清淤等 措施,但并不能有效解决问题。近些年来,利用植 物对水体进行修复的研究进展较快。由于植物修 复水体具有环境修复、景观美化的双重作用,并且 一次投入后可长期使用,总体成本不高,成为研究 热点。该文对近几年来关于植物修复水体的部分 研究进行了总结归纳,统计和分析了中国知网上发 表的关于水体修复植物研究情况,为进一步进行水 体修复工程提供参考。

1 水体的主要污染物

水体污染物来源较多,污染物种类也很复杂, 为了简单明了地反应水体的污染状况,在日常水质 检测中使用的指标则较少。根据《2012年中国环 境状况公报》,我国淡水河流的主要污染指标总体 为化学需氧量、五日生化需氧量和高锰酸盐指数, 部分河流则为氨氮和总磷;湖泊的主要污染指标为 总磷、化学需氧量和高锰酸盐指数。地下水中主要 超标指标为铁、锰、氟化物、"三氮"(亚硝酸盐氮、硝 酸盐氮和氨氮)、总硬度、溶解性总固体和硫酸盐和 氯化物等,个别监测点存在重(类)金属超标现象。

城市水体的主要污染物有总氮、总磷,其中总 氮(TN)、氨氮(NH。-N)、总磷(TP)和高锰酸盐指 3.2 常用单子叶植物科的分析

双子叶植物,但是在统计的试验研究中,单子叶植 物的种数却居于多数,占总数的69.84%,其中, 植物种类最多的是天南星科共出现了11种,占到 总数的 17.46%;其次是莎草科,共计出现 5 种, 占 7.94%;再次为禾本科、眼子菜科、雨久花科和 鸢尾科,各占6.35%; 这6科的植物种数占到 50.8%,居于绝对多数;其余则散布于其它各 科(见表 2)。

收稿日期:2014-05-30

第一作者简介: 宋恒(1964-), 男, 山东省淄博市人, 高级工程 师,从事水污染管理工作。

通讯作者:徐恒戬(1966-),男,博士,副教授,从事植物生物学 与生物技术研究。E-mail:xhj310@163.com。

数(CODMn),主要来自城市生活及餐饮旅游等第 三产业污水[1-2]。因此,有效控制氮、磷元素的富集 是城市水体修复的根本。

水体修复的主要植物类群

植物是地球上最普遍的生物,水体污染过程中 滋牛的大量藻类也属于植物范畴,许多藻类对水体 污染具有指示意义。地球上的植物,总体上分为藻 类植物、苔藓植物、蕨类植物、裸子植物和被子植物 五大类群,其中研究最多的为被子植物。从对近几 年来的研究分析可看出,水体修复的植物有:蕨类植 物出现槐叶萍、满江红和四叶萍[3];藻类常用伊乐 藻[4];没有裸子植物的研究报道;被子植物使用量最 大,其中大部分为野生植物,少部分为栽培作物。

被子植物通常被分为单子叶植物和双子叶植

物,从这两个类群来看,在研究修复水体植物中,

使用单子叶植物的科数略低于双子叶植物,二者

相差不多,其中单子叶植物共计14个科,双子叶

植物共计 15 个科(见表 1)。系统发育的观点认

为,单子叶植物可能起源于水生植物,因此,在单

子叶的水生植物较为普遍,应用也较广泛,尽管涉

水体修复被子植物的分类学分析

3.1 在科的水平上,单、双子叶植物相近

及的科数少,但实际使用的种类较多。

在被子植物中,尽管单子叶植物的科数少于

表 1 近年来研究中使用植物的科数统计分析

Table 1 Statistics analysis on families used in the researches in recent years

	单子叶	植物 Monocots		双子叶植物 Dicots					
序号 No.	科名 Family	序号 No.	科名 Family	序号 No.	科名 Family	序号 No.	科名 Family		
1	百合科	8	天南星科	1	唇形科	9	千屈菜科		
2	灯心草科	9	香蒲科	2	酢浆草科	10	伞形科		
3	禾本科	10	眼子菜科	3	金鱼藻科	11	十字花科		
4	花蔺科	11	雨久花科	4	爵床科	12	睡莲科		
5	姜科	12	鸢尾科	5	莲科	13	苋科		
6	莎草科	13	泽泻科	6	蓼科	14	小二仙草科		
7	水鳖科	14	美人蕉科	7	菱科	15	旋花科		
				8	毛茛科				

表 2 单子叶植物的各科植物种数比较

Table 2 The comparision on the species in each monocots family

序号 No.	科名 Family	种数 Species	占总数比例/% Rate	序号 No.	科名 family	种数 Species	占总数比例/% Rate
1	百合科	2	3. 17	9	香蒲科	1	1.59
2	灯心草科	2	3.17	10	眼子菜科	4	6.35
3	禾本科	4	6.35	11	雨久花科	4	6.35
4	花蔺科	2	3. 17	12	鸢尾科	4	6.35
5	姜科	1	1.59	13	泽泻科	1	1.59
6	莎草科	5	7.94	14	美人蕉科	1	1.59
7	水鳖科	2	3. 17	15	合计	44	69.84
8	天南星科	11	17.46				

3.3 常用双子叶植物科的分析

在统计的植物中,双子叶植物的科数占多数,但植物种数却占少数,仅占 30.16%,不到单子叶植物的一半,各科使用的植物仅 $1\sim2$ 种,没有出

现相对集中的科(见表 3)。在双子叶植物中,也有着复杂多样的水生植物,为此,相关研究还应进一步加强。

表 3 双子叶植物各科的种数比较

Table 3 The comparison on the species in each dicots family

序号	科名	种数	占总数比例/%	序号	科名	种数	占总数比例/%
No.	Family	Species	Rate	No.	Family	Species	Rate
1	唇形科	2	3. 17	9	千屈菜科	1	1.59
2	酢浆草科	1	1.59	10	伞形科	2	3.17
3	金鱼藻科	1	1.59	11	十字花科	1	1.59
4	爵床科	1	1.59	12	睡莲科	1	1.59
5	莲科	1	1.59	13	苋科	1	1.59
6	蓼科	2	3.17	14	小二仙草科	2	3.17
7	菱科	1	1.59	15	旋花科	1	1.59
8	毛茛科	1	1.59	16	合计	19	30.16

3.4 研究中使用的单子叶植物种类分析

通常在被子植物中单子叶植物的种类远小于双子叶植物,但在该研究的统计表明,单子叶植物在水体净化研究中的使用数多,且相对集中于少数几个科中。其中的植物使用频率有较大的差异,使用频率最高的为凤眼莲,达到 5.43%;其次是水葱和黑藻,使用频率都达到 4.89%,美人蕉的使用率达到4.35%;再次是菖蒲、芦苇和苦草,使用频率在3%以上;另外,风车草、香蒲、黄鸢尾、再力花及鸢

尾的使用频率也在2%以上(见表4)。

3.5 研究中使用的双子叶植物种类分析

统计结果表明,双子叶植物在水体修复研究中使用的种类少于单子叶植物,散布于各个科中。使用频率最高的为金鱼藻,达到 4.35%;其次使用较多的是千屈菜、铜钱草及空心菜,使用频率在 2%~3%,翠芦莉连、睡莲、菱、羊蹄、水芹以及穗花狐尾藻的使用频率在 1%~2%,其余植物的使用率低于 1%(见表 5)。

表 4 研究中常用的单子叶植物种类分析
Table 4 Analysis on the monocots species used in the research

序号	植物名称	频数	频率/%	文献	序号	植物名称	频数	频率/%	文献
No.	Plant name	Number	Frequency	Reference	No.	Plant name	Number	Frequency	Reference
1	吊兰	1	0.54	[5]	24	石菖蒲	1	0.54	[17]
2	富贵竹	2	1.09	[6][10]	25	春羽	2	1.09	[18]
3	反曲灯芯草	1	0.54	[5]	26	大漂	2	1.09	[19][25]
4	苍白灯芯草	1	0.54	[5]	27	海芋	2	1.09	[7][13]
5	黑麦草	1	0.54	[5]	28	红掌	2	1.09	[12]
6	花叶芦竹	2	1.09	[7][13]	29	绿萝	2	1.09	[18]
7	芦苇	6	3.26	[8][20][33][36]	30	水芋	1	0.54	[17]
8	野生稻	1	0.54	[9]	31	香蒲	4	2.17	[20][27][30]
9	黄花蔺	1	0.54	[10]	32	篦齿眼子菜	1	0.54	[21]
10	水罂粟	1	0.54	[11]	33	马来眼子菜	1	0.54	[21]
11	闭鞘姜	1	0.54	[10]	34	眼子菜	1	0.54	[16]
12	藨草	1	0.54	[12][24]	35	菹草	2	1.09	[20]
13	风车草	4	2.17	[6][7][9][13]	36	凤眼莲	10	5.43	[8][19][22][25] [31][34][36][39] [44]
14	旱伞草	2	1.09	[12]	37	巨紫根水葫芦	1	0.54	[22]
15	细叶纸莎草	1	0.54	[13]	38	梭鱼草	2	1.09	[13][34]
16	水葱	9	4.89	[7][8][13][24]	39	再力花	3	1.63	[7][13]
				[29][30][39]					
17	黑藻	9	4.89	[11][14][20][21]	40	常绿鸢尾	2	1.09	[14]
				[26][32][3]					
18	苦草	6	3.26	[14][15][36][38]	41	西伯利亚鸢尾	1	0.54	[23]
19	菖蒲	7	3.80	[6][7][13][24]	42	黄鸢尾	4	2.17	[5][7][13][28]
				[27][29]					
20	黄菖蒲	2	1.09	[11][23]	43	鸢尾	4	2.17	[12][27]
21	金叶金钱蒲	1	0.54	[5]	44	慈姑	2	1.09	[24][3]
22	金边石菖蒲	1	0.54	[16]	45	花叶美人蕉	2	1.029	[7][13]
23	美人蕉	8	4.35	[8][23][29][30]	46	合计	111	60.33	
				[33][35]					

表 5 研究中常用的双子叶植物种类分析

Table 5 Analysis on the dicots species used in the researche

序号	植物名称	频数	频率/%	文献	序号	植物名称	频数	频率/%	文献
No.	Plant name	Number	Frequency	Reference	No.	Plant name	Number	Frequency	Reference
1	金鱼藻	8	4.35	[16][32][36][37][38][43]	11	西洋菜	1	0.54	[42]
2	翠芦莉	2	1.09	[7][13]	12	睡莲	3	1.63	[17][39]
3	莲	3	1.63	[36][39][40]	13	地笋	1	0.54	[41]
4	酸模	1	0.54	[41]	14	水苏	1	0.54	[41]
5	羊蹄	2	1.09	[5][41]	15	紫叶酢浆草	1	0.54	[19]
6	菱	3	1.63	[36][40]	16	喜旱莲子草	1	0.54	[25]
7	毛茛	1	0.54	[5]	17	狐尾藻	1	0.54	[38]
8	千屈菜	5	2.72	[17][28][33][39]	18	穗花狐尾藻	3	1.63	[16][20][43]
9	水芹	2	1.09	[8]	19	空心菜	4	2.17	[35][44]
10	铜钱草	5	2.72	[16][18]	20	合计	48	26.09	

3.6 研究中使用的其它植物

在近期的研究中,除了上述植物外,还出现尝试采用蔬菜作物,作为富营养水体的处理植物,包括包菜、番茄、黄瓜、芹菜、生菜、莴笋和油麦菜^[42,45-46]。采用蔬菜是一个有益的尝试,但由于蔬菜的食用特性,必须考虑食品的安全性,不得在水体中出现严重的微生物或重金属等有害物质的污染。

4 展望

我国的水体污染极其严重,湖泊、河流和大型 水库因其不同环境,污染程度差别很大。在城市 绿化中的水体也都存在不同程度的污染,影响了 景观质量。因此污染水体修复和维持将是一个长 期的产业目标,这方面发展前景广阔。目前对水 体植物修复的研究,涉及的植物较多,根据不完全 的统计,近期研究涉及到63种(变种),但其中常 用的较少,超过5%使用频率的只有凤眼莲和美 人蕉;超过4%的使用频率的只有水葱、黑藻和金 鱼藻;超过3%使用率的只有芦苇、苦草和菖蒲。 这些研究主要是小规模实验室研究,还缺乏大规 模的工程验证,研究不同气候带的适宜植物还较 少。由此看来,进一步研究不同气候带和不同水 体类型的植物组合,特别是要研究相应的菌类参 人,并确定相应组合,是将来水体植物修复研究的 一个方向。

参考文献:

- [1] 李义禄,张玉虎,贾海峰,等. 苏州古城区水体污染时空分异特征及污染源解析[J]. 环境科学学报,2014,34(4):1032-1044.
- [2] 李如忠,刘科峰,钱靖,等.合肥市区典型景观水体氮磷污染特征及富营养化评价[J].环境科学,2014,34(5):1718-1726.
- [3] 胡萃,刘强,龙婉婉,等.水生植物对不同富营养化程度水体 净化能力研究[J].环境科学与技术,2011,34(10):6-9.
- [4] 文晓峰,张饮江,黎臻,等.虾、蟹、沉水植物与生态浮床组合种养模式效果研究[J].广东农业科学,2012(24):138-142.
- [5] 汪秀芳,许开平,叶碎高,等.四种冬季水生植物组合对富营养化水体的净化效果[J].生态学杂志,2013,32(2):401-406.
- [6] 周真明,叶青,沈春花,等.3 种浮床系统对富营养化水体净 化效果的研究[J].环境工程学报,2010,4(1):91-95.
- [7] 聂磊,贺漫媚,代色平.十种湿地挺水植物净化广州河涌污水的生理生态效应分析[J]. 湖北农业科学,2011,50(9):1776-1780.
- [8] 李文芬,刘沛芬,颜亨梅,等.5种浮床植物在水环境恢复治理中的净化差异[J].北京师范大学学报:自然科学版,2012,48(2):173-176.
- [9] 贺鸿志,余景,李拥军,等.3 种湿地植物构建的浮床系统修复富营养化水体的效果研究[J]. 华南农业大学学报,2011,32(2),16-20.
- [10] 陈生香,闽峰,尚旭,等. 几种热带景观植物在不同水体中的去污能力比较研究[J]. 热带作物学报,2010,31(6):
- [11] 田如男,朱敏,孙欣欣,等.不同水生植物组合对水体氮磷

- 去除效果的模拟研究[J]. 北京林业大学学报, 2011, 33(6), 191-195.
- [12] 朱秀红,夏丹,杨阳,等. 4 种水生植物对污染水体净化效果的研究[J].河南农业大学学报,2013,47(1):87-91.
- [13] 聂磊,贺漫媚.观赏挺水植物在河涌污水中的生长及净化效果研究[J].江西农业大学学报,2012,34(4):832-838.
- [14] 罗思亭,张饮江,李娟英,等. 沉水植物与生态浮床组合对水产养殖污染控制的研究[J]. 生态与农村环境学报,2011,27(2),87-94.
- [15] 赵迪,徐文娟,李勇,等. 刺苦草对富营养化水体净化作用的研究[J]. 中国农学通报,2010,26(2):189-192.
- [16] 方焰星,何池全,梁霞,等.水生植物对污染水体氮磷的净 化效果研究[J].水生态学杂志,2010,3(6);36-40.
- [17] 李妙, 龙岳林, 姚季伦, 等. 4 种观赏性水生植物对居住区水体的净化效果[J]. 湖南农业大学学报: 自然科学版, 2010,36(2):115-119.
- [18] 陈友媛,崔香,董滨,等.3 种水培观赏植物净化模拟污水的试验研究[J].水土保持学报,2011,25(2):253-257.
- [19] 刘盼,宋超,朱华,等.3 种水生植物对富营养化水体的净化作用研究[J].水生态学杂志,2011,32(2):69-74.
- [20] 陈志笃,王立志.复合前置库技术对水体净化效果[J].生态环境学报,2013,22(9):1588-1593.
- [21] 任文君,田在锋,宁国辉,等. 4 种沉水植物对白洋淀富营养化水体净化效果的研究[J]. 生态环境学报,2011,20(2):345-352.
- [22] 梁团伟,周利,葛建华,等.巨紫根水葫芦对平原水库富营养化水体净化效果的研究[J],城镇供水,2013(2):48-50.
- [23] 吴黎明, 丛海兵, 王霞芳, 等. 3 种浮床植物及人工水草去除水中氮磷的研究[J]. 环境科技, 2010, 23(3):12-16.
- [24] 高丁梅,杨涓,虎春宇,等. 宁夏 4 种水生植物对富营养化水体净化效果的研究[J]. 农业科学研究,2012,33(2):63-65.
- [25] 华建峰,胡李娟,张垂胜,等.3 种水生植物对锰污染水体 修复作用的研究[J].生态环境学报,2010,19(9): 2160-2165.
- [26] 严永富,王锦堂,方琛亮.EM 菌与沉水植物联合应用脱氮除磷试验研究[J].浙江水利科技,2013(4):19-20,24.
- [27] 徐秀玲,陆欣欣,雷先德,等.不同水生植物对富营养化水体中氮磷去除效果的比较[J].上海交通大学学报:农业科学版,2012,30(1):8-14.
- [28] 张振明,刘佳凯,刘晶岚,等. 不同挺水植物对水体净化效果及生长特性研究[J]. 灌溉排水学报,2013,32(1): 139-141.
- [29] 衣十妹,武鵬,张鹰,等. 不同植物对富营养化水体净化效果的研究[J]. 安徽农业科学,2011,39(20):12307,12408.
- [30] 吴卿,王美,许吟波,等. 不同植物生物栅系统对富营养化景观水净化试验[J]. 水土保持学报,2013,21(4):171-175
- [31] 刘国锋,张志勇,严少华,等.大水面放养水葫芦对太湖竺山湖水环境净化效果的影响[J].环境科学,2011,32(5): 1299-1305.
- [32] 邹国林,王全金,朱平,等. 低温下沉水植物塘对农村污染水体的净化作用[J]. 武汉工程大学学报,2012,34(3):38-41.69.
- [33] 高红杰,彭剑峰,宋永会,等. 多层组合生物浮岛对城市河水的净化效果[J]. 环境工程技术学报,2011,1(4):334-338.
- [34] 张金锋,施雪良,郭敏晓. 凤眼莲和梭鱼草对水体净化能力的初步研究[J]. 安徽农业科学,2008,36(28):12167-12168,12166.

(下转第140页)