银杏提取物抑菌效果的研究

曲晓华,辛玉峰

(曲阜师范大学生命科学学院,曲阜 273165)

摘要:测定了不同浓度的银杏叶提取物对五种常见菌的抑菌活性, 研究了不同的 pH 条件和热处理对抑菌活性的影响。结果表明: 随着银杏叶提取物浓度的增加, 其抗菌活性也显著增强; 细菌的最低抑菌浓度为 4%, 霉菌的最低抑菌浓度为 6%; 银杏叶提取物的活性物质具有 热稳定性, 高温短时间加热不影响其抗菌活性; 在 pH 为7的条件下, 抗菌活性最强。

关键词:银杏叶提取物;抑菌活性;热稳定性

中图分类号: S792.95.01

文献标识码: A

文章编号: 1002-2767(2008)01-0025-02

Study on Anti-microbial Activity of the Extract of Ginkgo biloba

QU Xiao-hua, XIN Yu-feng

(Life Science College, Qufu Normal University, Qufu 273165)

Abstract: The anti-microbial activities of the extract of Ginkgo biloba(EGb) were assayed with the different concentration, the effects of pH and heat treatment on anti-microbial activity of EGb were also studied. The results showed: With the increase of the concentration of EGb, the anti-microbial activity increased significantly. The minimal inhibition concentrations (MIC) were 4% against bacteria and 6% against fungi. The anti-microbial activity of EGb was characterized by its heat stable ability and high temperature did not effect on its anti-microbial activity. When under the condition of pH equaled to 7, the anti-microbial activity reached the highest level.

Key words: extract of ginkgo biloba (EGb); anti-microbial activity; heat stable ability

银杏树(Ginkgo biloba)属银杏科植物,银杏叶 具有重要的药用价值[1]。到目前为止,已知银杏叶 提取物的化学成分多达 160 余种, 主要有黄酮类、萜 类、酚类、生物碱、聚异戊烯、奎宁酸、亚油酸、蟒草 酸、抗坏血酸、α-已烯醛、白果醇、白果酮等¹。 食品 在加工、运输、储藏和销售过程中,由于微生物的污 染,常会腐败变质而造成直接经济损失,向食品中加 入防腐剂是一种简 单有效的方法。从这一目的出 发,国内外都在大力开发高效、低毒、广谱和经济实 用的防腐剂,其中从植物中寻找有抑菌防腐作用且 安全性高的活性物质,有着广阔的前景。银杏叶提 取物(EGb)及其制剂已成为近代国内外研究开发的 热点之一。研究表明银杏树药用价值最高的部分是 叶,而银杏叶提取物含有多种活性成分,如银杏黄 酮、银杏酸、银杏内酯等[3],银杏叶提取物抗菌作用 的研究,迄今鲜有报道。 本文针对银杏叶提取物对 常见菌的抑制作用进行了研究,以阐明其抗菌特性。

第一作者简介: 曲晓华(1979-), 女, 山东省烟台市人, 硕士, 讲师, 从事微生物学研究。E-mail; an ty214@163. com。

1 实验方法

1.1 银杏叶提取物的制备

银杏叶采自曲阜师范大学校园。除去银杏叶中的杂物和泥沙,切成宽约0.5 cm 的细丝。酒精浸提后采用常压浓缩法得到提取原液(每 1 mL 提取液对应 1 g 银杏叶),密闭储藏备用^[4]。

1.2 银杏叶提取物的抑菌效果实验

取不同体积的银杏叶提取物与培养基混合倒入锥形瓶,配制成含提取物 $2\% \times 4\% \times 5\% \times 6\% \times 8\% \times 10\% \times 15\%$ 的培养基,高压灭菌。分别取 1 mL 菌悬液于平皿中,注入 45 [©]左右的培养基摇匀,置于恒温箱中培养,并以未加银杏叶提取物的培养物作为对照^[5]。平板菌落计数法进行计数。

1.3 银杏活性物质最低抑菌浓度的测定

精确配制含 2%、4%、5%、6%、8%、10%的 EGb 溶液的梯度浓度的细菌、霉菌培养基。接种、 培养后观察其生长现象。

1.4 不同 pH 条件下银杏活性物质对金黄色葡萄球菌的抑菌作用

取金黄色葡萄球菌和不同浓度的银杏活性物质

黑龙江农业科学 25

收稿日期: 2007-06-30

基金项目: 曲阜师范大学科研启动基金资助项目。

与培养基混匀,用酸碱缓冲液调节 pH 分别为 5.0、6.0、7.0、8.0、9.0 的含 EGb 的培养基。倾注法分离培养后进行平板记数,以观察不同 pH 下银杏叶提取物抑菌效果的变化。

1.5 银杏叶提取物的耐热性实验

选取各个菌种的最低抑菌浓度,将不同浓度的银杏叶提取物置于不同的加热条件进行处理,在已灭菌的相应的培养基中加入已进行热处理的 EGb 及 5 种菌悬液,进行平板菌落计数。

2 结果与分析

2.1 不同浓度银杏叶提取物的抑菌效果

经反复实验表明:随着银杏叶提取物浓度的增加,其抑菌效果明显增强(见表 1)。当银杏叶提取物的浓度在 10%时,则完全能抑制实验细菌的生长,要完全抑制霉菌的生长,则需要浓度为 15%。当提取物浓度低于 4%时,细菌和霉菌的生长均不受抑制。

表 1 不同浓度 EGb 的抑菌效果(菌落个数)

菌种	EGb 浓度							
	0	2%	4%	5%	6%	8%	10%	15%
大肠杆菌	200	198	150	107	65	30	0	0
枯草芽孢杆菌	180	182	179	132	28	0	0	0
金黄色葡萄球菌	210	215	174	112	52	2	0	0
黄曲霉	150	149	150	146	120	56	2	0
毛霉	170	177	169	167	132	73	3	0

2.2 最低抑制浓度(MIC)的确定

由实验可知,对试用菌的最低抑制浓度(MIC)分别为:大肠杆菌 4%,枯草芽孢杆菌 5%,金黄色葡萄球菌 4%,黄曲霉 6%,毛霉 6%。当浓度低于此浓度时,对菌种的抑菌效果不明显,当高于此浓度时,则产生抑菌作用。而且银杏叶提取物对不同菌的最低抑制浓度是不同的。总的来说细菌需要的浓度比霉菌要低一些。

2.3 pH 对抑菌效果的影响

由表 2 结果表明:银杏叶提取物 pH 在 5.0~

9.0的范围内对金黄色葡萄球菌都产生抑菌作用; pH 为 7.0 时, 抑菌作用最强, 随着 pH 的降低或升高, 抑菌作用有降低的趋势。当 pH 小于 5.0 或大于 9.0 时, 抑菌效果不明显。

表 2 不同 pH 条件下各种银杏提取液浓度对 金黄色葡萄球菌的抑菌作用(菌落个数)

pН	菌落数						
	0	2%	4%	6%	8%	10%	15%
5. 0	203	202	201	135	103	41	2
6.0	206	204	196	113	76	19	0
7.0	210	208	173	68	20	0	0
8.0	207	209	189	126	68	18	0
9.0	204	201	205	147	94	36	3

2.4 加热处理对抑菌效果的影响

对银杏叶提取物进行不同的加热处理后,其抗菌活性受到不同程度的影响(见表 3)。其中低温长时间热处理对其影响较大,抑菌效果不明显;而高温短时间处理,银杏叶提取物的抑菌作用受影响较小。

表 3 不同热处理对银杏抑菌活性的影响(菌落个数)

菌落	未加热 处理	75 ℃ 30min	85 °C 20min	95 ℃ 15min	121 ℃ 5min
大肠杆菌	112	200	189	155	148
枯草芽孢杆菌	106	180	167	154	136
金黄色葡萄球菌	132	210	209	182	133
黄曲霉	84	150	139	121	95
毛霉	89	170	165	123	106

参考文献:

- [1] 王金亭. 银杏叶提取物的药用及食用价值[J]. 食品与药品, 2006. 8(11): 73-74.
- [2] 梁立兴. 中国当代银杏大全[M]. 北京: 北京农业大学出版 社. 1993
- [3] 白桂芬. 银杏叶的药用作用保健功能与加工利用[J]. 农产品加工, 2007(8): 51-53.
- [4] 汪劲松,潘继承.中草药千里光有效成分的提取及抑菌作用的研究[J].湖北师范学院学报,2000(3):48-49.
- [5] 周建新, 汪海峰, 姚明兰, 等. 银杏叶提取物(Egb)抗菌特性的研究[J]. 食品科学, 2002, 23(9): 118-121.

科技论文写作规范一

1 摘要

集中体现论文的研究过程和结果。以100~300字为宜。摘要应以第三人称阐述,不可使用"本文"、"笔者"等词语。内容应包括研究工作目的、方法、结果和结论。通常要求摘要应写成报道性文摘,即不阅读全文,就能获得必要的信息。摘要中不出现图、表、化学结构式和非公知公用的符号和术语,也不宜引用文中图、表、公式和参考文献的序号。

2 前言

应以简洁的语言介绍相关领域的研究进展,因此要

注意参考文献的引注。前言还需要说明研究的目的、意义及创新之处。慎用"首次报道"、"首次发现"等等较为绝对化的词语。

3 材料与方法

清楚地交代出试验设计、研究对象及研究方法等。研究对象如品种、肥料、农药、土壤、病虫害等名称应交代清楚;还应交代试验必要的范围、重复次数及样本大小。对一般的研究方法注明出处即可,如采用…方法[1]为参考文献中的序号)。对于有所改进或新的方法要详细叙述。

26 黑龙江农业科学