小麦大群体育种方法研究初报:

苏文泉 王宜利 陈 辉 聂文丽 王宝生

(黑龙江省农垦科学院九三科研所)

摘要 本文主要通过十几年研究和实践,阐述了小麦大群体育种主要技术环节和研究结果:六倍体小黑麦×小麦杂种 F_1 八育株率为 100%,不育度为 96.1%,自交不育,人工回交很难结实,自然异交主穗结实 8.55 粒,每株结实 32.25 粒。 BC_3F_1 育性恢复正常,是最佳选择世代;杂种后代通过 $1.0\sim1.4$ 万伦琴 C^{68} — γ 射线处理,出苗率 25%左右;杂种后代类型分离广泛, BC_3F_1 小麦型占 96.97%、小黑麦型占 3.08%;杂种后代模拟生产条件种植,有利选择;杂种后代采用定量选种法,杂种 F_1 、 F_2 、 F_4 、 F_6 全部小区测产选,提高了选择的准确性。现已选到一批有希望的新品系,为北方春小麦育种探索了新途径。

关键词 大群体 定量选种法 自然回交中图分类号 S512.1035

小麦大群体育种方法研究是针对小麦常规育种存在的问题而设计的,主要研究内容是:①利用远缘杂交不育性(以下简称 DR 不育性)创造大群体的研究;②杂种后代模拟生产条件种植方式的研究;③定量选种方法的研究。小麦大群体育种方法以创造大群体为核心,以导入外源有利基因为内容,以选育突破性小麦品种为目的;它将小麦常规育种、远缘杂交和辐射育种融为一体;使小麦外源基因导入、基因重组、基因突变和染色体畸变相结合。应用小麦大群体育种方法选育的九三 91y-101 小麦新品系产量高于标准品种新克旱 9号;品质好于标准品种新克旱 9号,在生产上已种植 1.7万公顷;决选的公顷在 6000 千克左右;比标准品种新克旱 9号增产 20%左右新品系,决选的抗病亲本、丰产性亲本已被许多育种单位引用,实践证明,小麦大群体育种方法可以在北方(特别是对北方春麦区)小麦育种提供了技术依据。

1 材料与方法

1.1 材料

- 1.1.1 六倍体小黑麦 六倍体小黑麦最早来源于墨西哥国际玉米、小麦改良中心,经我所品系杂交后选育的新品种(品系),如北联 3 号、北联 5 号、北联 10 号等,经镜检染色体为 AAB-BRR。
- 1.1.2 小麦 主要选用当地优良品种(品系),主要有克丰 2号、克旱 9号、龙麦 17、北 88-26 和本所育成的高代品系。

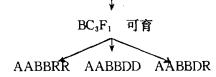
1.2 方法

1.2.1 创造大群体 ①父本小麦的选择;第一次杂交父本选择综合性状好、矮秆材料,以有

^{*} 收稿日期 1996-06-09

利下代自然 授粉。

第一次自然回交选择综合性状好,具有不同特点的 20 个左右亲本混合种植,丰富遗传基础;第二次自然回交选择多花性好的材料为亲本,增加穗粒数;第三次自然回交选择大粒材料为亲本,提高千粒重;②调节好花期。一般母本出苗后种植父本为宜;③严格去杂,特别是六倍体小黑麦×小麦伪杂种一定要认真拨除;④选择。杂种 F_1 、BC₁ F_1 、BC₂ F_1 ,按亲本性状选收不育株,BC₁ F_1 ,育性基本恢复正常(仅有个别单株不育),按育种目标性状要求选收可育株。


六倍体小黑麦×小麦

AABBRR×AABBDD 人工杂交

F, 不育×AABBDD 自然回交 辐射

BC,F不育×AABBDD 自然回交 辐射

BC₂F1 不育×AABBDD 自然回交 辐射

1.2.2 杂种后代种植方式 模拟生产条件种植,密度 600 株/平方米、行距 15 厘米、行长 5~10 米,3 叶期压青苗,并进行化学药剂除草。

产量试验区间不设步道。

- 1.2.3 定量选种法 为了提高选择效果和研究适宜密植条件下选择方法,采用小区测产选、田间穗选、室内盘选,杂种 F₁、F₂、F₄、F₆ 都进行小区测产选,杂种 F₃、F₅ 穗系繁殖,定量主要指标是:①产量。比标准品种增产 20%以上;②品质。角质率 90%以上,饱满度 1 级、容量 780 克/升以上;③抗性。熟相正常,主要病害轻;④株高 100 厘米左右,每穗粒数 35 粒以上,千粒重 35~40 克。
- 2 结果与分析
- 2.1 创造大群体的研究
- 2.1.1 六倍体小黑麦×小麦杂交结实性 几年来,利用六倍体小黑麦×小麦杂交几千个组合,据 647 个杂交组合平均结实率为 36.5%(见表 1)。

从表1中看到,六倍体小黑麦×小麦当代结实并不十分困难,1995年获杂种F。种子4200粒,杂种F。种子虽然瘦小,但出苗率为61%,也不算太低,反交杂交果发育不正常,因此,为了获得大量有效地杂交种子,应以六倍体小黑麦为母本、小麦为父本配制杂交组合较为理想,这一点和前人研究结果是一致的。

2.1.2 杂种后代育性表现 杂种 F_1 :杂种 F_1 不育是本研究的基础。通过套袋自交调查不育 株率为 100%,不育度为 96.1% (见表 2)。

杂种 BC,F1:小麦型和中间型全不育,小黑麦型大部分可育,少部分不育。

杂种 BC₃F₁:大部分恢复可育,据考种结果平均每穗结实 33.4 粒,接近正常小麦结实率, 但仍有少数中间型不育。

2.1.3 杂种后代异交结实性 六倍体小黑麦×小麦杂种后代自交不育,异交是否能结实是本

年份	地点	组合	授粉花数	结实粒数	平均结实率(%)
1984	云南省元谋县农场	204	24480	10977	43.7
1 9 85	云南省元谋县农场	121	14532	6757	46.5
1987	黑龙江省九三科研所	48	4850	1 7 15	35. 35
1987	云南省元谋县农场	27	3125	850	27.7
1988	北京中国农科院	22	2040	582	27. 5
1989	云南省元谋县农场	22 5	7135	2718	38. 1
	合计	647	56164	2 3599	(X)36.5

表 1 六倍体小黑麦×小麦杂交结实率

表 2 六倍体小黑麦×小麦杂种 F, 育性

年份	地点	穗数	结实粒数	平均结实率(%)	不育率(%)
1987	黑龙江省九三科研所	955	1241	1.3	95. 55
1987	云南省元谋县农场	29	38	1. 3	95. 7
1988	北京中国农科院	80	61	0.8	97.7
1989	黑龙江省九三科研所	56	61	1.1	95.6
	合计	1120	1401	(\overline{X}) 1. 13	(\overline{X}) 96-1

研究的关键。六倍体小黑麦×小麦杂种后代人工回交结实很困难,但异交结实较为理想。近几年,利用六倍体小黑麦×小麦杂种后代不育性进行制种,每年可收到复合交 F_0 种子 $5\sim43$ 万粒,是常规育种人工杂交量的 $10\sim100$ 倍,杂种 F_1 和杂种 BC_1F_1 异交制种结实性分别见表 3、表 4。

套袋自交 自然异交 组合 穗数 结实粒数 穗结实粒数 穗数 结实粒数 穗结实粒数: 80D-562×克86-534 18 3 0.17 40 345 8.625 80D-562×克85-858 1 0.25 **- 55** 6.875 80D-562×九三 83-833 3 0 17 205 12.06 85D-256×九三 84074 10.57 2 7 74 0 0 85D-256×克86-534 0 2 . 18 9.0 85D-55×九三 83-833 0 0 8 8.0 64 85D-261×九三83-833 0 33 4.125 85D-261×克85-858 6.0 0 30 85D-261×九三 84074 0.083 4.67 6 5 3 14 合计 50 9 $(\overline{X})0.18$ 98 838 $(\overline{X})8.55$

表 3 DR 不育性 F₁ 制种结实性

实践证明,DR 不育性是创造大群体的有效工具。

2.1.4 杂种后代类型表现 ①六倍体小黑麦×小麦杂种 F_1 表现中间型;②[(六倍体小黑麦×小麦) F_1 ×小麦] F_1 ,小麦型占 95.45%、小黑麦型占 4.52%、中间型占 0.03%,详见表 5;③ {[(六倍体小黑麦×小麦) F_1 ×小麦] F_1 ×小麦} F_1 ×小麦] F_1 ×小

^{*}调查主穗异交结实粒数。

见表 6。

表 4 DR 不育性 BC₁F₁ 制种结实性

	套袋自交			自然异交				人工杂交				
类型	穗数	结实 粒数	穗结实 粒数	平均结 实率(%)	穗数	结实 粒数	穗结实 粒数	平均结 实率(%)	穗数	结实 粒数	穗结实 粒数	平均结 实率(%)
 小麦型	89	855	9. 61	26. 56	922	16785	18.20	43. 37	77	583	7.57	29. 41
偏小麦 中间型	65	290	4.46	12. 30	431	4107	9. 53	26. 27	49	311	6. 35	24. 49
寫 8N 小黑 麦中间型	24	199	8. 29	21. 40	272	2915	10.72	24. 60	24	166	6. 92	23. 99
扁 6N 小黑 麦中间型	3	18	6.00	14. 52	34	444	13. 06	29. 37	3	24	8.00	25. 53
中间型	3	0	0	0	34	118	3.47	8. 68	2	5	2.50	10.00
6N 小黑 麦型	3	159	53.00	100	32	1262	39. 44	80. 69	2	39	19.50	52. 70
制 2 小麦型	8	0	0	0	18	548	30. 44	76. 10				

表 5 DR 不育性 BC,F, 类型

49 A	总株数	6N	小黑麦型	- /	小麦型	中间型	
组合		株数	占总数%	株数	占总数%	株数	占总数%
1209×9061	871	58	6.66	813	93. 34	0	0
1209×(84-141×克 80-179)	519	31	5.97	488	94. 03	0	0
1209×(G×A×445×B×克 80-179) ×X(小麦)	483	16	3. 31	466	96. 48	1	0. 21
$1209 \times [(76D-1 \times H1881 \times W327)]F_{5}$ $\times 84B-2020$	535	15	2. 80	520	97. 20	0	0
1209×九三 83-833	514	12	2. 33	502	97. 67	0	0
合计	2922	132	(\overline{X}) 4. 52	2789	(X)95.45	1 ,	(₹)0.03

表 6 DR 不育性 BC₂F₁ 类型

60 A	24 Let 444	小	黑麦型	小麦型		
组合	总株数	株数	占总数%	株数	占总数%	
1209×(G×A×445×B×克 80-179)×X(小麦)	59	3	5.08	56	94. 92	
1209×9051	20	0	0	20	100	
$1209 \times [(76D-1 \times H1881 \times W327)]F_5 \times 84B - 2020$	6	0	0	6	100	
1209×(G×A×445×B×克80-179)×88B-5066	11	0	0	11	100	
1209×88B-5066	18	1	5. 56	17	. 94.44	
1209×(84-141×克 80-179)	169	1	0.59	168	99. 41	
1209×九三 83−833	74	6	8. 11	68	91.89	
合计	357	11	(X)3.08	346 .	(\overline{X}) 96. 92	

2.1.5 杭性表现 各世代小麦型抗性大部分较差,主要是叶枯和赤霉病重。随着回交代数增加和人为选择压力,BC₃F₁ 出现抗性好的材料,如抗赤霉病亲本一91y-96 就是在 BC₃F₁ 中选

出的。

2.1.6 丰产性表现 BC₃F₁ 育性稳定,出现大穗、多花、大粒的材料,如年种植达 1.7 万公顷的 91y-101,穗粒数超过一百粒的 95P-83,千粒重超过 50 克的 91y-200,公顷产量达 6 000 千克、比标准品种增产 20%左右的高产新品系,都是在此世代中选出来的。

2.2 杂种后代种植方式和选种方法的研究

杂种后代完全模拟生产条件种植,全试验区没有一块标牌,区间没有步道,在 0.8 公顷选种圃中种植选种材料 400 万粒以上,相当于常规育种的 10~20 倍,杂种后代模拟生产条件种植的主要好处是:①小面积试验地可播种大量杂种后代;②消灭了稀植个体充分表现,使杂种后代提前以群体状态生存在生产条件下,有利于选择;③产量预试圃和产量鉴定圃区间不设步道,收获时两头各去掉 25 厘米,消灭了边际效应对试验的影响,提高了产量试验的准确性。

选种主要采用定量选种法,定量使选种指标量化,如小区测产选,杂种 F₁、F₂、F₄、F₆ 代实收测产,产量超过标准品种 20%才能中选;室内盘选,将田间决选的穗系倒入盘中,种子饱满度1级、角质率90%以上,无病粒才能中选。有了标准,便于掌握,一般技术人员都可参加选种。

2.3 选育结果

- 2.3.1 选育的九三 91y-101 小麦新品系产量高于标准品种新克旱 9 号、品质好于新克旱 9 号,仅角质率一项每千克加价 0.08 元,1995 年种植面积已达 1.7 万公顷,是极有发展前途的一个新品种。
- 2.3.2 选到了一批小麦高产新品系,这些新品系比标准品种新克旱 9 号增产 20%左右。
- 2.3.3 选到一批种子饱满度达到一级、容重为 780 克/升以上小黑麦新品系,使小黑麦育种产生新突破。
- 2.3.4 选到一批抗性好、丰产性好的亲本材料为小麦常规育种服务。
- 3 讨论与结论
- 3.1 DR 不育性不是废物而是宝,关键在于利用。过去人们将六倍体小黑麦×小麦不育株做为废物而抛弃,人工回交很难得到种子,无法形成有效地选择群体,因而多以失败而告终。我们反其道而行之,改克服不育性研究为利用不育性研究,结果获得预想不到的成功,实践证明, DR 不育性不是废物而是宝,关键在于利用。
- 3.2 小麦大群体育种方法不但可以充分利用主效基因,而且还可以挖掘庞大的微效基因。有人曾把小麦基因划为三类:一类是基本基因;二类是主效基因;三是微效基因。基本基因与小麦生命和分类学性状有关,而与杂交育种关系不大;主效基因只有数千个,具有育种价值的更少,这些有效基因经过几代育种家的辛勤工作,有利基因已得到充分重组,再想获得优良基因有效重组已十分困难;而数以百万计的微效基因却因群体小尚未被开发利用,这也是人们认为小麦常规育种已到极限的理论根据。小麦大群体育种方法使杂种后代扩大十几倍,甚至上百倍,不但为主效优良基因增加重组机率,同时也为挖掘庞大的微效基因潜在效应提供重组机会。

小麦大群体育种方法不但充分利用小麦的 A、B、D 染色体,同时导入黑麦 R 染色体,使小麦产生质的变化,使小麦育种产生突破。

3.3 模拟生产条件种植杂种后代,表现真实选择可靠。杂种后代稀植,个体生产潜力可以充分 发挥,人们按个体表现选择,结果是移植生产条件,个体生产潜力受到限制,群体表现和个体表 现面貌皆非,使几代的辛勤劳动付之东流。杂种后代完全模拟生产条件种植,个体表现虽不如 稀植好,但是在生产条件下群体表现较真实,提高了选择的有效性。 定量选种法容易掌握,杂种 F_1 、 F_2 、 F_4 、 F_6 都进行小区测产选,比目测选要准确得多,小区间不留步道, 收获时两头各去掉 25 厘米,消除边际效应的影响。据九三所谢民泽同志多年试验,不同品种边际效应是第一行为 $15\%\sim85\%$,第二行为第一行的 40%,区间不留步道可减少边际效应的影响,提高试验的准确性。

3.4 小麦大群体育种方法是选育小麦新品种、小黑麦新品种、创造品种资源的有效途径之一。它使小麦外源基因导入、基因重组、基因突变、染色体畸变相结合,使小麦常规育种、远缘杂交、辐射育种融为一体,是小麦导入外源基因、创造品种资源的新途径,是选育小麦品种、小黑麦品种的新方法。

小麦大群体育种方法经过十几年的研究已日趋完善。利用它可以选育小麦新品种、小黑麦新品种,利用它可以将外源有利基因导入普通小麦,创造新抗源、新资源,丰富小麦种质基因库,利用它可以选育超高产小麦新品种,使小麦育种产生新突破。

参考文献

- 1 马缘生等. 小麦与黑麦类远缘杂交中结实性问题的研究. 作物学报,1980,4
- 2 邱崇力.普通小麦与六倍体小黑麦杂交不亲和性的研究.作物学报,1986,1
- 3 王兴智, 六倍体小黑麦与普通小麦杂种 F1 花粉植株的细胞遗传学研究, 遗传学报, 1984, 1
- 4 苏文泉等. 小黑麦×小麦杂种不育性利用研究初报. 黑龙江农业科学,1992,4

Preliminary Study on Macro-population Breeding of Wheat

Su Wenquan et al.

(Agricultural Technique of jiusan, Heilongjiang Institute)

Abstract The key technical links and results on macro-population breeding of wheat are described in the paper. The sterile percentage of the cross between hexaploid triticale and wheat was 100% and the degree of sterility was 96.1%. The selfing progeny was sterile and the back-cross progeny hardly fruited. The fruit number on the leading spica of the natural exagamy plant was 8.55 and the tatol on one plant was 32.25. Fertility was restored in BC_3F_1 , which Was the best generation for selecting. After treated with 10 to 14 thousand roentagen Co^{60} -gama ray, the emergence rate of progeny was about 25% and the separation of the progenies was wide. Wheat type accounted for 96.97%, and triticale type accounted for 3.08%. The progenies were planted with the method similar to production, which is good for selection. The progenies were selected with quantitative indexes. F_1, F_2, F_4 and F_6 were all selected by measuring the yields of plots. A batch of promising mew lines has been developed.

Key words Macro-population, Selection with quantitative indexes, Natural backcross