存的分配比例是受其自身基因型支配的,故可在一定的自然气候和栽培条件下,选出较合理的粒茎比值,以获得较高的经济产量。 本试验中6、7主穗粒重的选择效果不显,由于同时选择千粒重,提高了选择效果。

从 4、5 的相对效率相近, 6、7 的相对 效率相同,可以看出穗长度的选择在提高产 量方面的作用较小。穗长可能增加有效小穗 数和每穗粒数,但这两性状与产量的遗传相 关不密切。

主穗粒数在试验中与产量遗传相关不显

著。实际上有的品种虽穗粒数较多,但籽粒 不饱,显然会影响产量。

据表 5 结果及上述分析,认为采用(3)即,主茎秆重+主穗粒重+千粒重的综合选择项目,可以明显地收到间接选择产量的效果。

参考文献:

马育华:数量遗传理论在作物育种的应用。

刘来福,作物数量遗传学基础三、遗传力与选择效果。遗传1979年1卷5期。

试论谷子粗蛋白质、粗脂肪含量与物候期的相关关系*

那海智 吴秀兰

(黑龙江省农科院)

为查明谷子种子体内粗蛋白质,粗脂肪含量与谷子物候期相关关系,我们从现有原始材料和推广品种中,选出36个品种,结合1978年度品质分析结果,按早,中,中晚熟期分组,进行数理统计,从中找出种子品质与生物学性状一些带有规律性的相关关系,供育种和良种推广工作的参考。

一、谷子早、中、中晚品种的物 候期与营养成分相关关系

1. 早熟品种相关关系

我们选取 1978 年统一种在省院谷子原始材料圃中,生育期为 78~117 天的十三个早熟品种,按农业部公布的标准分析方法,进行了租蛋白质与脂肪含量测定。

在十三个早熟谷子品种中粗蛋白质含量 在 11~12% 之间的 有 备 荒 1 号和旱谷 1 号 两个品种; 在 12~13%的有克育 18、大粗穗、 德都黄沙子,在13~14%的有备荒2号、黄沙子1号、克育1号,疙瘩青1号和黑谷1号,在14%以上的有水里站、黄沙子、备荒4号。凡生育期为88~100天的品种,粗蛋白质含量基本在13%以上,生育期为100~117天的品种,粗蛋白质含量大都在12%以下。十三个早熟品种粗蛋白质含量最高的为生育期96天的备荒4号,含量为14.718%,最低者为生育期101天的备荒1号,含量仅为11.272%。粗脂肪含量十三个早熟品种变化幅度在2.40~5.29%之间。

为探求谷子早熟品种间粗蛋白质与粗脂肪含量;粗蛋白质与物候期,粗脂肪与物候期间的相关关系,我们进行了各变量间相关系数和相关系数显著性测定(详见表1)。

分析表 1 看出,谷子早熟品种粗蛋白质 含量与谷子出苗至抽穗期的天数,呈高度负

[※] 本文承蒙省院综合化验室赵铁男主任审阅和指导。

熟 期	测定项目	相关系数 (r)	自由度 (N-2)	t值	理论†值	相关程度
	蛋白质出苗至抽穗	- 0.778	11	4.109	>3.106/P = 0.01	高度 相关
早	一抽穗至成熟	0.390	31	1.405	>1.363/P = 0.2	中度相关
	一生育期	-0.307	11	1.063	>0.876/ $P = 0.4$	弱相关
	一脂 肪	0.016	11	0.059	< 0.129/P = 0.9	弱相关
	脂 肪一出苗至抽穗	0.093	11	0.310	>0.260/P = 0.8	弱相关
熟	一抽穗至成熟	-0.404	11	1.464	>1.363/ $P = 0.2$	中度相关
	一生育期	-0.223	11	0.758	> 0.697/P = 0.5	弱相关
中	蛋白质—出苗至抽穗	-0.394	6	0.231	>0.131/P = 0.9	弱相关
	一抽穗至成熟	-0.808	6	3.360	>3.143/P=0.02	高度相关
	一生育期	-0.829	6	3.632	>3.143/P=0.02	高度相关
•	一脂 肪	- 0.573	6	1.713	>1.440/P=0.2	中度相关
•	脂 防一出苗至抽穗	0.499	6	1.411	>1.134/P = 0.3	中度相关
熟	一抽穗至成熟	0.583	6	1.758	>1.440/P = 0.2	中度相关
	一生育期	0.798	6	1.187	>1.134/P = 0.3	高度相关
	蛋白质出苗至抽穗	-0.160	13	0.385	>0.259/P = 0.8	弱相关
中	一抽穗至成熟	0.052	13	0.188	>0.128/ $P = 0.9$	弱相关
	一生育期	-0.100	13	0.036	< 0.128/P = 0.9	弱相关
晚	一脂 肪	0.153	13	0.559	>0.538/P = 0.6	弱相关
	脂 肪一出苗至抽穗	- 0.197	13	0.725	>0.694/P = 0.5	弱相关
熟	一抽穗至成熟	0.062	13	0.224	>0.128/P = 0.9	弱相关
	一生育期	- 0.231	13	0.857	>0.694/P = 0.5	弱相关

相关,相关系数r = -0.778, t测定结果极为显著。并且,谷子生育期与粗蛋白质及粗脂肪含量均呈负相关趋向。

2. 谷子中熟品种相关关系

通常将谷子生育期在105~115天的品种视为中熟品种,我省此类熟期品种繁多,仅从中选出8个,进行养分含量测定。

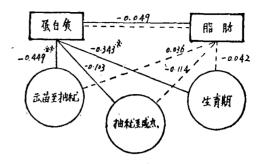
由测定结果可知,在8个中熟品种中,平均生育期在107天左右,粗蛋白质和粗脂肪的含量变化幅度分别在10.730~13.782%和3.38~5.07%之间。粗蛋白质含量在13%以上的品种有嫩选8号、安系62、嫩选6号、脂肪含量较高的品种有安谷68(5.07%)。

谷子生育中物候期与粗蛋白质、粗脂肪含量之间的相关关系的测定结果(见表1)。 分析表1说明,中熟8个谷子品种粗蛋白质含量与物候期皆呈负相关。并以抽穗至成熟 期及全生育期天数对粗蛋白质含量影响最大。在同一中熟品种中粗蛋白质含量与粗脂肪含量则呈中度负相关,相关系数为-0.573。

3. 谷子中晚熟品种相关关系

我省谷子生育期在115~120天的称之为中晚熟品种,我们对十五个中晚熟品种进行了物候期天数,种子内粗蛋白质,粗脂肪含量的测定,平均生育期为116.8天,粗蛋白质含量为11.019~14.177%,粗脂肪含量为3.34~4.72%,其中粗蛋白质含量在14%以上的品种有合光8号和绥谷1号。

此外,还进行了粗蛋白质与粗脂肪,以及与期物候期天数相关性测定(见表 1)。


由表 1 得知,谷子中晚熟品种,种子内 粗蛋白质,粗脂肪的含量与全生育期天数均 呈负相关趋势。

二、谷子群体内粗蛋白.质, 粗脂肪含量与生育期相 关关系

综合分析三十六个谷子品种,生育期天数在88~121天之间,其粗蛋白质,粗脂肪含量的变化幅度分别为10.730~14.718%和2.40~5.29%之间,其变异系数蛋白质(O.V=7.82%)小于脂肪(O.V=14.39%)。

将早、中、中晚不同熟期的谷子进行物候期与其粗蛋白质,粗脂肪含量间的生物统计分析,变数为36,通过直接查弗雪氏相关系数显著性测验表,结果(见表2)。

为简明和易懂,再根据表2数据绘制图 一,供直观分析和研究。

图二 各子营养成分5物候期相关图

从表 2 和图一看出,群体谷子体内粗蛋白质含量与粗脂肪含量呈负相关趋势,粗蛋白质含量分别与出苗至抽穗期和全生育期天

表 2 谷子种子中粗蛋白质、粗脂肪含量与物候期相关关系

第 果 定 项 口	相 关 系 数 (r)	显 著	标 准 1%	显著程度
蛋白质一脂 肪 —出苗至抽穗 —抽穗至成熟 —生育期 脂 防—出苗至抽穗 —抽德至成熟	- 0.749 - 0.449 - 0.103 - 0.343 0.036 - 0.114	0.325 "" "" ""	0.418 " " " " " "	不显著 极显著 不显著 显 著
一生育期	-0.042	"	"	不显著

数负相关性呈极显著和显著状态。粗脂肪含 量与物候期的相关性,则无显著性差异。

三、结 语

综上所述,通过谷子早熟,中熟,中晚 熟品种物候期天数和谷子体内粗蛋白质,粗 脂肪含量及其相关关系的测定表明:粗蛋白 质与粗脂肪含量两者呈弱度负相关趋势, 出苗至抽穗期天数,是影响谷子粗蛋白质含 量的重要时期,改变谷子生物特性,加速出 苗后的抽穗期的进程,是提高谷子粗蛋白含 量的最要紧的生物学措施,对育种工作具有 重要的指导意义,生育期越短,粗蛋白质的 含量越高,反之则越低。但生育期对粗脂肪 的含量影响并不显著。为此。努力加速培育 早熟品种,不但是抗御低温、冷害的需要, 而且也是提高谷子品种体内粗蛋白质含量的 保证,品种的早熟性和质 佳并 不 是 矛 盾双 方,而是相辅相成的互促因素,掌握和运用 这条规律,对加速早熟谷子新品种培育和实 现农业 现代化的 进程,具有 理论指导意 义。