寒地水稻双稀型超高产 栽培法的研究

肖 免 刘乃生

(黑龙江省农业科学院水稻研究所)

摘要 本文通过试验,提出"双稀型超高产栽培法"技术概念,认为寒地水稻在秧田播量降至75克/平方米,本田平方米基本苗22.5株情况下取得超高产产量。其增产原理是:单株成穗数显著提高,从而用最小基本苗满足群体要求;依靠每穗颗花数增加、结实率提高来提高产量。双稀型超高产的主要技术特征是:有效分蘖节位降低,有效分蘖天数延长,无效分蘖天数减少,有效分蘖率提高,单株分蘖趋进饱和,抽穗后生长速率增加,光合效率高,避免"秋落",从而增产;同时,双稀法较传统旱育稀植节约种子80%,从而达到高效。

"超高产"属水稻高产再高产研究范畴。 八十年代,北方稻作区发展了旱育稀植技术, 南方稻作区产生了稀少平栽培法,南北呼应, 皆以降低栽培密度为技术中心,形成了多种 形式并存的稀植栽培法。八十年代末期,北方 稻作区在旱育稀植基础上又提出了"超稀植" 技术概念,南方稻作区亦在稀少平之上又继 而提出了"三稳一高"栽培法。通观近期水稻 高产栽培研究有如下几大焦点:第一,水稻个 体生长与群体生长的矛盾与协调;第二,在保 证水稻群体数量相对稳定情况下,提高水稻 个体质量;第三,提高个体与群体分蘖成穗 率,最大限度减少无效分蘖;第四,如何提高抽穗后的光合生产能力。本项目的研究,以协调水稻个体生长与群体生长矛盾为中心,探讨水稻高产再高产技术途径,并兼顾有关持续高产的栽培理论,目的在于继续提高黑龙江省稻区单产水平。

试验材料与方法

试验采用田间试验方法,试验地为桦川 县建国乡大堆丰村,土壤为种植30年左右的 黑土型水稻土。试验设计如表1所示,秧田处

表 1

试验设计

AL THE ALL ES	秧田播量	本	田插植规	格	#h → m U /al
处理代号	(g/m^2)	苗数/m²	穴数/m²	苗数/穴	
1	50	15	15	1	1:100
2	75	22. 2	22. 2	1	, 1:100
3	100	30	15	2	1:100
4 '	150	45	22. 2	2	1 : 100
5	200	60	30	2	1:100

理1平方米,本田处理15平方米,供试品种

龙花 83-079。4 月 28 日播种,5 月 30 日插

秧。全层基肥:公顷施磷酸二铵 100 公斤,尿素 100 公斤,7 月 15 日公顷追施尿素 50 公斤,插后 7 天用去草净灭草,实行保水灌溉。

结果与分析

一、秧田试验结果

从表 2 可见,依一般秧苗素质分析,5 个 处理的秧苗皆为壮苗。其中带麋率、百株干 重、充实度等三项指标具有相同表现趋势,即 随播量降低而提高,至处理 2 达到临界高点, 继续降低播量,秧苗素质反而下降,因此,平 方米播 75 克干种的处理 2 为培育壮秧的稀 播临界点。

二、产量结果

测产采取小区内采点测产,每区采两点, 每点 0.5 平方米,测产结果及方差分析(见表 3、4)。

表 2

秧苗素质状况

			-					
处理代号	株高 (cm)	秧 龄 (天)	叶龄	茎基宽 (cm)	第一叶鞘高 (cm)	带 蘖 率 (%)	百株干重 (g)	充 实 度 (g/cn
1	13.8	32	3.4	0. 47	2. 9	70	4.2	0.30
2	14.9	32	3.6	0.41	2.9	80	4.8	0.33
3	16. 2	32	3.8	0.49	2.6	80	4.5	0. 27
4	14. 8	3 2	3. 6	0. 43	2.8	40	4. 3	0. 29
5,	13.5	32	3. 4	0. 34	2.8	10	3. 7	0. 28

表 3 试验产量

处理代号	产量(kg/ha)
1	8944. 5
2	9940.5
3	9848. 3
4	9858.5
5 .	9422. 0

表 4	产量	产量方差分析						
变异因素	自由度	方 差	F值	Fo. 05				
处 理	4	3136.4	2. 53	3. 26				
重复	3	2903. 5	2.34					
机 误	12	1240. 3						
总变异	9							

从产量结果看,随着插植基本苗降低,产量逐渐提高,至处理2产量最高,继续降低基本苗则产量反而下降,因此,处理2为稀植临界点。该插植规格为30×15厘米,每穴单本。与平方米75克插量相配套,秧本田比例1:100,在品种为龙花83-079等12个叶片情况下,这种稀播与稀植临界点的栽培法,即双稀型栽培法。

三、双稀法主要增产因素

(一)产量构成因素分析

产量构成因素有多种表示方法,经典表示方法有:Engledew 法,表示成产量为穗数与穗重的乘积;松岛法将穗重又分为三个因素:每穗颖花数、结实率和千粒重的乘积;最近,江苏省凌启鸿教授又将穗数表示为基本苗与单株成穗数的乘积,并将产量的继续提高寄于单株成穗数的提高。基于双稀法栽培特点的要求,将单株成穗数表示为单株平均最高分蘖数与分蘖成穗数的乘积,写成:

产量=基本苗×(单株平均最高分蘖茎数+1)×分蘖成穗率×(1-损苗率)×每穗 額花数×结实率×千粒重。

产量构成因素结果(见表 5)。

· 1. 每穗颗花数的大幅度增加是双稀法增产的重要原因。双稀法较处理 3(近于超稀植方法)每穗颗花数增加 9.7%,较处理 4、5 分别增加 22、4%与 9.6%,在诸多因素中,此因素增加效益最高,是双稀法增产的重要因素之一。

如用Engledew法分析,双稀法增产的

处理代号	基 本 苗 (株/m²)	平均最高分蘖数 (茎/株)	分蘖成穗率 (%)	穗 数 (穗/m²)	瀬 花 数 (个/穗)	结实率 (%)	千粒重 (g)	穗 重 (g/穗)
1	15.0	21.3	96. 0	306. 7	90.9	90.8	28. 2	2. 32
2	22. 2	20. 5	96. 7	446.0	98.1	90.0	28. 5	2. 54
3	30.0	12. 1	90.8	329. 6	89.4	89.3	28.0	2. 20
4	45.0	11.9	83. 9	449.3	80. 1	99. 6	29. 1	2.08
5	60.0	8. 2	80.0	397.5	89.5	89. 5	29. 0	2. 15

主要原因是穗重的增加。双稀法较处理 3、4、5分别增加 15.5%、22.1%、18.1%。稳定穗数,增加每穗产量是近几年高产再高产的主要目标。因此,双稀法高产道路与近期高产生理期望并行不悖。

2. 双稀法主要技术特征是降低基本苗。 与双稀法并行的超稀植亦是大幅度降低基本 苗,双稀法降低基本苗以降低每穴苗数为主, 单位面积穴数为辅。超稀植以降低单位穴数 为主,降低每穴苗数为辅。双稀法基本苗在12 个叶片品种情况下降至22.2/平方米,超稀植 在13~12 叶片品种情况下降至 25~45/平方 米(9×8 寸-2 株或 9×6 寸-3 株)。双稀法 每穴基本苗降至最低一单本。由于单本,产生 了生长补加效应,如处理1与处理2较处理3 与 4 每穴苗数分别降低 1 倍,单株分蘖数相 应提高 76%与 72.3%。而处理 3 较处理 5 单 位面积穴数降低1倍,单株分蘖却仅增加 47.5%。所以,降低基本苗后分蘖增加效应表 现为降低每穴苗数高于降低单位面积穴数。 又如,处理 2 较处理 3 基本苗低 33.3%,但单 位面积成穗数却提高35.3%。另外,只有每穴 单本才能使分蘖趋向饱和分蘖,单株分蘖数 值飞跃性地超过20,而两本以上却停留在12 个左右,因此,单本植追求饱和分蘖,饱和分 碟导致穗粒增加,因而增产。

3. 基本苗与平均最高分蘖数、单株成穗数有显著负相关性,分别为 r^{**}=-0.91 与 r^{**}=-0.92,其中单株成穗数的提高是高产再高产的技术途径之一,因此,双稀法降低基本苗数导致单株成穗显著提高而增产。

4.分蘖成穗率的提高亦是高产再高产的技术要求之一,南方稻区稀少平栽培法产生之前一般为50%,稀少平栽培法提高至60~70%,我省的旱育稀植亦为70%左右,但双稀法提高到96.7%,较处理3增加6.5%,较处理4增加15.2%,较处理5增加19.7%,较大面积生产增加幅度更大,几处生产"无浪费"状态,这充分说明双稀法技术质量是十分良好的。

5. 结实率与基本苗亦呈相关趋势,双稀 法结实率达到90.0%,较处理3提高了 1.9%,较处理4与5提高0.5%,较大面积 生产增加5~10%。

6. 千粒重变化幅度较少,但其对产量影响较小。

(二)增产基础条件分析

1. 生育进程

在生育进程多项考察指标中(见表 6),除 有效分蘖终止期外,其它变化较小,几乎忽略。有效分蘖终止期与基本苗变化具有相关 趋势,即随基本苗降低,有效分蘖的山缩短。 传统的旱育稀植,在8月初抽穗情况下,有效 分蘖终止期多发生在6月25~30日,而双稀 法推迟至7月8日,较处理5延长8天,较大 面积生产田延长10~15天,有效分蘖天数延 长,为单株分蘖指数与分蘖成穗数的提高奠 定了基础,这一变化是双稀法对传统水稻栽 培技术变革的重大特征之一。

从表7可见,双稀法在7月1~10日间 单株分蘖又继续增加7.6茎,占总分蘖数的

处理代号	播期	移植期	分蘖始期	有效分蘗终止期	抽糖期	成熟期
1	4,28	5,30	6.14	7,11	7,30	9,20
2	4、28	5、30	6,14	7,8	7、30	9.18
3	4,28	5,30	6.14	7.6	7,31	9,16
4	4.28	5,30	6.14	7,3	7,31	9.16
5	4、28	5,30	6,14	6、30	7,31	9、15

表 7

试验单株分蘖指数状况

A1 750 (A) E3		6	月				7	月			8月
处理代号	14	19	24	28(日)	1	4	7	10	13	17(日)	20(日)
1	0.8	2. 3	3.8	6. 9	10.1	14.6	18. 1	19.5	21.3	21.0	20.4
2	1.5	3. 2	5.2	9. 2	12.9	16.4	19.0	20.1	20.5	20.3	19.5
3	0. 47	1.4	2.8	4.6	7. 4	9.6	11.3	12.1	11.7	11.8	11. 6
4	077	2.3	3.5	6.0	8.6	10.2	11.6	11.9	11.9	11.5	9. 7
5	0.13	1.4	2.5	4. 2	6. 1	7.5	8. 0	8.1	8. 2	7.6	6-1

37%。而处理 4、5 仅增加 3.3 与 1.9 茎,占总分蘖数的 27.7%与 23.2%;双稀法此期分蘖 大部分为有效分蘖,有效分蘖比率为86.8%,而处理 4、5 此期分蘖基本为无效分蘖,有效分蘖比率仅为 34.2%与 1.5%。这一差异是双稀法增产的重要基础条件之一。

2. 抽穗期主要生理指标

从表 8 可见·抽穗期叶面积指数、叶绿素含量测定,皆以处理 2 为最高,干物质重量除处理 5 之外,也以处理 2 为最高。这说明,基本苗降低,并不影响干物质生产,且在抽穗时达到了较为理想水平,有利于抽穗后群体结构优化,且以处理 2 为临界优化点,从而证实了双稀法具有良好的生理基础。

表 8

试验抽穗期生理生化状况

处理代号	叶面积指数	叶绿素 (SPAD值)	干物质 (g/m²)	氮 量 (g/m²)
1	2. 99	44.7	629. 7	10.14
2	3. 72	45. 1	741.9	10. 98
3	2. 62	42.1	663. 0	9. 75
4	3. 05	41.7	668. 4	8. 42
5	3. 64	40. 3	783. 3	10. 42

3. 抽穗期氮含量分析

表 9 可见,剑叶、叶、茎及整体含氮量与 基本苗皆有负相关性。说明降低基本苗对抽 穗后光合作用功能有增加的趋势。鞘与穗含 氛量变化较为复杂,其规律有待深入研究。

4. 生长速率分析

表 9

试验抽穗期各器官含氮量

(单位:%)

处理代号	剣 叶	叶	茎	鞘	穗	全株
1	3. 74	3. 29	0. 89	1. 36	1.04	1.61
2	3. 93	3. 12	0.74	1.14	1. 19	1.48
3	3. 36	3. 08	0. 73	1.16	1.42	1.47
4	3- 19	2. 52	0. 55	0. 92	1.32	1. 26
5	3. 16	2. 52	0. 67	1.21	1.20	1.33

表 10 可见,处理 2 始终保持高的生长速率,生长较为平稳,至抽穗前达到最大生长速

率,符合高产栽培的生长要求,尤其抽穗后生长速率明显高于其它处理,较处理 3、4 和 5

分别增加 38%、37.6%和 8.6%。从而说明双 稀法充分利用抽穗后的光能而增产。

5. 氦吸收速率

从表 11 可见, 双稀法在两个时期表现较高的氦吸收速率,即 7 月 15~25 日的孕穗期与抽穗后的灌浆成熟期。孕穗期氦吸收速率

表 10			试验	群体生物	速率		(单位	:g/n	n²·目)
处理代号	5	6	6	7	7	7	8	9	(月)
<u> </u>	30	15	25	5	15	25	5	20	(目)
1	0.119	0. 614	5. 543	7. 729	20. 72	28. 07	16.81		
2	0. 280	1. 957	9. 194	13. 50	20. 63	2 8. 39	14. 45		
3	0.051	1. 435	5. 953	13.66	13. 65	31.40	10.41		
4	0. 065	1. 867	8. 803	16.88	26.66	12. 34	10.56		
5	0.396	2. 512	9. 737	16. 52	18.03	30.72	14.62		
表 11			试验	幹体 氮吸	收速率		(单位	:g/n	n²·目)
	5	6	试验	芹体氮吸	收速率	7	(单位 8	:g/n	n ² ・日) (月)
表 11 处理代号	5 30	6				7 25			
	_		6 25	7	7		8	9	(月)
处理代号	30	15	6 25 0. 178	7 5	7 15	25	8 5 0. 074	9	(月)
处理代号	30 0. 006	0. 024	6 25 0. 178 0. 292	7 5 0. 194	7 15 0. 116	25 0. 491	8 5 0. 074	9	(月)
处理代号 1 2	0. 006 0. 013	0. 024 0. 082	6 25 0. 178 0. 292	7 5 0. 194 0. 202	7 15 0.116 0.564	0. 491 -0. 065	8 5 0. 074 0. 150 0. 024	9	(月)

的提高可部分说明双稀法颖花增多的原因, 抽穗后该值显著增加,表明其抽穗后光合作 用强,完全符合高产栽培生理。

综上认为,双稀法增产决不是偶然的,而 是稀播稀植后秧苗个体质量提高,个体生长 与群体生长矛盾得以协调,各项生理生化指 标优化所致。

结论与讨论

(一)通过试验证明,在12个叶片品种情况下,稀播临界点为75克干种/平方米,稀植临界点为22.2穴/平方米,每穴单本,同时采用稀播与稀植临界点的栽培法为双稀型栽培法。

(二)双稀法第一增产原因为每穗颖花数增加,每穗颖花增加的原因是个体生长与群体生长协调,尤其是孕穗期氮吸收速率显著

提高,而传统栽培方法该期表现为群体密度大而个体生长氦吸收衰落。

(三)双稀法降低秧田播量与基本苗,在极大程度上消除了个体生长障碍,秧苗素质显著提高,单株分蘖、成穗数与传统栽培相差近10倍。可谓双稀法增产第二个原因,在寒地稻区采用仅22个左右基本苗创造一个适宜群体,可谓开创性的。如果采用13个叶片品种,基本苗有降低10~12个的可能性。

(四)双稀法较传统栽培法另一项明显不同就是有效分蘖终止期后移,有效分蘖时间延长,无效分蘖减少并趋近消亡,这一重大变化是水稻栽培的重大变革,它的外延将开辟水稻研究新领域。

(五)双稀法抽穗期生理生化指标较传统 栽培法明显优化。抽穗后生长速率明显增加, 光合作用增强,光合产物积累多是双稀法增 产的第三大原因。双稀法为秋优型栽培法。