稻草还田定位试验初报

金成龙 全允基 马永凤 金学诛 方健孝

(东宁县农业技术推广中心) (水利试验站) (东宁镇农技站)

摘要 为了验证有机肥增肥改土,增产增收效益,我们进行了连续9年的稻草还 田定位试验,试验结果表明,9年平均增产稻谷4.2~39.7%,增加土壤有机质0.3~0.95%。

从 1983 年开始进行了水田稻草还田定位试验。其目的在于研究和明确,长期施化肥、稻草、化肥与稻草配合施用对水稻的增产效应,以及对土壤肥力变化和水稻生育的影响。

一、材料和方法

试验地为三岔口镇光荣村科技示范户责任田。试验前土壤含有机质 2.62%,全氮 0.13%,速效氮 50ppm,速效磷 1.4ppm,速效 钾 147ppm,比重为 2.0克/立方厘米,容重为 1.24克/立方厘米,孔隙度 38%。供试肥料亩 施含氮量 46%尿素 20公斤,过圈稻草 1 555公斤。

试验处理为 6 个处理:①每年施稻草区; ②每年施稻草和尿素区;③隔年施稻草区;① 隔年施稻草和年年施尿素区;⑤每年施尿素 区;⑥不施肥的对照区。

试验小区固定不变,小区面积为 20 平方米,顺序排列,单灌单排。稻草和尿素结合手工整地一次施入全层。用国际水稻研究所的测产法测定小区产量,每处理共测三个点次的平均值。土壤理化性质分析有机质、速效氮、速效磷、速效钾、容重和孔隙度。并对各处理的水稻生育,如分蘖、株高及产量构成因素进行调查分析。

试验区的一般播期为 4 月 12 日前后,插

秧期为5月25日左右,插秧规格为9寸行距,5寸穴距,每穴插4棵基本苗。试验品种为京引127和藤系138。

二、结果与分析

(一)不同处理与产量

从表 1 的 9 年平均稻谷产量变化看出: 年年施稻草和尿素的处理 2 比对照处理 6 每

表 1 不同处理对稻谷产量的影响

. 单位:kg/亩

攻之		· · ·				
年人理	1	2	3	4	5	6
度						
1983	320. 2	320. 2	300. 2	360. 2	320. 2	270. 2
1984	650. 4	680.4	500. 3	643, 7	583. 7	566.9
1985	680. 4	740. 4	780. 4	680. 4	780. 4	600.3
1986	373. 5	626.9	473. 6	540. 3	593. 7	366. 9
1987	275. 2	387. 9	250. 2	291. 8	286. 2	258. 2
1988	366. 9	6.13. 7	323. 5	500. 3	400. 2	£76. 9
1989	510.3	673. 7	423.6	586. 9	504. 9	410.2
1990	516. 9	550. 3	343.5	466. 9	500.3	350.2
1991	521. 4	565. 1	474,2	465. 3	648.9	413. 4
平 均	468. 4	576. 5	429. 9	503.,9	513.4 • •	412.6
增产率 <u>(%</u>)	13. 5	39. 7 ¹ .	4. 2	22. 1	24.4	0

注:*表示差异达5%显著水平;**表示差异达1% 显著水平。

亩增产稻谷 168.9 公斤,平均增产率为

39.7%,年年施稻草和尿素处理 2 比隔年施稻草和年年施尿素处理 3 每亩增产稻谷146.6公斤,平均增产率为34.1%,差异达极显著水平。年年施稻草和尿素处理 2 比每年施稻草处理 1 每亩增产稻谷108.1公斤,平均增产率为22.6%,差异达显著水平。

年年施尿素的处理 5 与对照比每亩增产稻谷 100.8 公斤,平均增产率为 24.4%,差异达极显著水平。每年施尿素处理 5 比隔年施稻草处理 3 每亩增产稻谷 83.5 公斤,平均

增产率为 19.4%,差异显著。隔年施稻草和年年施尿素处理 4 比对照亩增产稻谷 91.3 公斤,平均增产率为 22.1%,差异显著。年年施稻草处理 1 比对照每亩增产稻谷 55.8公斤,平均增产率为 13.5%,差异不显著。隔年施稻草处理 3 比对照每亩增产稻谷 8.3 公斤,平均增产率为 4.2%,差异不显著。从产量变化来看,最理想的施肥方法是有机肥和无机肥配合施用。

(二)不同处理与土壤理化性质

表 2

不同处理对土壤理化性质的影响

处理	有机质 (%)	速效级 (ppm)	速效磷 (ppm)	速效钾 (ppm)	酸碱度 (pH)	比 重 (g/cm³)	容 重 (g/cm³)	孔隙度 (%)
1	3. 35 * *	163.3 * *	11.64 * *	174.09 * *	5. 05	2. 28	1. 07	53. 1
2	3.57 * *	152. 9 *	11. 23 *	156. 14 *	5. 05	2. 53	1.05	58. 5
3	3. 12 *	116.7	7. 87	164. 96 * *	5. 05	2. 43	1. 28	47. 4
4	2.92 *	121. 6	3. 50	135. 13	4. 95	2. 21 .	1. 16	47. 5
5	2. 59	102. 6	3. 29	131. 18	5. 15	2. 44	1. 31	46. 3
6	2. 62	111.0	2. 47	107. 10	5. 15	2. 27	1. 28	43. 3

注:*表示差异达显著水平,**表示差异达极显著水平。

9年稻草还田定位试验中 4 次化验结果,年年稻草还田的处理 1 和年年稻草还田配合施用尿素处理 2 的有机质含量比对照多0.84%,平均每年增加有机质 0.093%,和处理 5(每年施尿素)、6(对照区)差异达极显著水平(见表 2)。

隔年稻草还田的处理 3 和隔年施稻草与年年施尿素的处理 4 的有机质含量比对照多 0.40%,平均每年增加有机质 0.044%,和对照差异达显著水平。

年年单施尿素的处理 5 的有机质含量比对照低 0.03%,每年平均减少有机质0.003%。

同样,年年稻草还田的处理 1 和年年稻草还田及配施尿素的处理 2 的速效氮和速效磷分别比照多 47. 1ppm 和 9. 0ppm,平均每年增加 5. 2ppm 和 1. 0ppm。处理 1 的速效氮和磷分别和处理 3、4、5 间差异达极显著水平。处理 2 的速效氮和磷分别和处理 3、4、5、6 间差异达显著水平。

隔年稻草还田的处理 3 和 4 的速效氮和磷分别比对照多 8. 2ppm 和 3. 2ppm,每年平均增加 0. 91ppm 和 0. 36ppm。处理 3、4 和处理 5、6 间差异不显著。

处理 1 和 3 的速效钾分别比对照增加 66. 9ppm 和 57. 9ppm,每年增加速效钾7.4 ppm 和 6. 4ppm。处理 1、3 和处理 4、5、6 间差 异达极显著水平。处理 2 和处理 4、5、6 间差 异达显著水平。

从稻草还田对土壤物理性质的变化看,容重的变化大于比重的变化。变化最明显的是孔隙度。年年稻草还田的处理 1 和 2 比对照增加孔隙度 12.5%,每年增加孔隙度 1.4%。隔年稻草还田的处理 3 和 4 比对照增加孔隙度 4.2%,每年增加孔隙度 0.5%。

总的来看,稻草还田是增加稻田土壤有机质,提高土壤速效养分,改善土壤理化性质的一项主要措施。

(三)不同处理与分蘖

近两年分蘖调查表明,年年稻草还田的

表 3

不同处理对分蘖的影响

月、日 理	6,5	6,20	6,30	7、10	7,15	7、20	9,20	每穴穗数
1	20. 0	37. 7	75. 7	125. 3	144. 7	138. 7	126. 7	25. 3
2	19. 0	54.0	96. 7	173. 0	188. 3	172. 0	161. 3	32. 3
3	19. 0	31. 0	62. 3	101.3	118. 3	107.7	105. 2	21.0
4	19. 7	39. 0	71.0	115. 7	137. 0	126. 3	122. 0	24. 4
. 5	19. 3	25. 3	51. 3	80.3	114. 0	118.3	118.7	23. 7
- 6	19. 3	28. 3	38. 1	9 3. 6	107. 0	99. 3	101. 0	20. 2

每穴增加有效穗 0.8~4.2 穗。年年施尿素区 比对照每穴增加有效穗 3.5 穗(见表 3)。

(四)不同处理与土壤含水量

1989年3月27日土壤含水量测定结果表明:连续6年稻草还田的土壤含水量为81.0~84.7%,比对照增加含水量11.2~14.9%。隔年稻草还田的土壤含水量比对照增加1.9~8.9%。年年施尿素的处理5含水量比对照少4.2%(见表4)。

表 4 不同处理对土壤含水量的影响

处理	鲜土重(g)	烘干土重(g)	水分重(g)	含水量(%)
1	209. 8	115. 9	93. 9	81. 0
2	190. 4	103. 0	87. 4	84. 7
3	203. 0	118. 2	84. 8	71.7
4	224. 8	125. 8	99. 0	78. 7
5	207. 0	125. 0	82. 0	6 5. 6
6	225. 5	132. 8	92. 7	69. 8

表 5

不同处理对水稻生育的影响

处 理	株高(cm)	穂长(cm)	穗粒数(个)	空秕粒(个)	千粒重(g)	草重(kg/m²)	稻谷重(kg/m²)
1	84. 7	15. 2	92. 8	14. 1	25. 0	0. 59	0. 64
2	93. 7	16.9	110.7	19. 3	24. 1	0. 89	0.78
3	82. 1	15. 5	88. 1	11. 4	25. 3	0. 59	0. 59
4	88. 4	16. 5	94. 9	18. 2	25. 1	0. 72	0.70
5	81. 1	16. 9	103. 6	16. 9	25. 2	0. 65	0.70
6	79. 9	15. 6	85. 2	9.8	25. 4	0. 59	0.54

(五)不同处理与水稻生育

8年调查结果表明:所有处理的株高比对照长1.2~13.8厘米,穗粒数比对照多2.9~25.5粒,空秕粒多1.6~9.5粒,干粒重低0.1~1.3克,每平方米草重高0~0.3公斤,稻谷重高0.05~0.24公斤(见表5)。

三、结 语

1.9 年稻草还田定位试验表明,稻草还 田是增加土壤有机质、速效氮、磷、钾,改善土 **壤理化性质和提高**稻谷产量的一项有效措施。

- 2. 稻草还田必须配合施用无机肥,特别 是氮素化肥,这样才能有利于稻草的分解,并 能提高当年的稻谷产量。
- 3. 几年试验产量结果表明,农业上的短期行为只靠无机氮肥,不施有机肥也能获得较高的产量。稻草的综合利用,稻草和氮肥混合施用时氮素的固定、稻草的分解,对氮、磷、钾的影响和利用等问题仍有待于进一步研究。