小麦根腐病菌 (Bipolaris sorokiniana) 粗毒素制备及其活性测定

张景春 朱秀廷 刘英选

(黑龙江省农业科学院植保所)

由 Bipolaris sorokiniana 引起的小麦根腐病是小麦的主要病害之一,一般可使小麦减产 10~15%。抗病育种是根治根腐病的有效途径,但由于缺乏抗源,给育种工作带来了很大困难。辐射诱变与离体培养相结合进一步扩大了变异来源,在组织细胞水平进行抗病性筛选,为抗病育种开辟了新的途径。

植物病理学的研究表明, Bipolaris sorokiniana 引起的小麦根腐病,主要是病原菌产生毒素所致。为了给抗病突变体的离体筛选提供可靠的选择压力,我们进行了小麦根腐病菌粗毒素活性测定,小麦根、芽在毒素中受抑制的程度,测量根、芽长度(见表1)。

由表 1 看出, 小麦种子在不同浓度的粗

表 1

小麦根腐病菌粗毒素对小麦种子和根芽的影响

品种		新聞光一号				克 丰 三 号				
浓 度	根长 cm	芽长 cm	受抑制根占%	受抑制 芽占%	根长 cm	芽长 cm	受抑制根占%	受抑制 步占%		
OK(水)	12.8	11.6		!	7.73	5.4				
浓缩液	1.0	0.4	92.6	96.5	0.7	0.7	91.6	88.0		
含粗毒素 50%	2.2	0.7	83.1	94.0	1.5	8.0	81.0	85.0		
含粗毒素 25%	3.7	2.2	71.1	81.5	4.4	3.2	44.0	42.0		
含粗毒素 12%	9.3	6.4	27.8	44.8	5.2	3.8	33.0	30.0		

毒素液中芽和根生长都受到不同程度的抑制,毒素浓度愈高,抑制作用愈强。

为了鉴定不同品种对根腐病菌毒素的反 应,取田间鉴定的抗病和感病品种各五个, 用同样的方法进行发芽试验,72小时后调 查发芽情况,其结果列于表2。

试验结果看出,小麦成株对根腐病的抗性与种子发芽对毒素的反应基本一致。在毒素中抗病品种根长受抑制的程度比感病品种低 21.4%,芽长受抑制的程度低 16.7%。

表 2 小麦根腐病毒素对不同抗 性品种根芽的抑制作用

处理	5ml粗	毒素	水	(CK)	
品种类别目	根长 cm	芽长 cm	根长 cm	芽长 cm	
抗病品种	1.7	1.4	4.6	2.7	
感病品种	1,4	1.2	4.9	1.9	
抗病品种比感病品种增减%	21.4	16.7	-6.1	42.1	

注: 蒙黑龙江省农科院育种所副研究员孙光祖协助表示感谢!

由上述结果可以认为,利用种子发芽试验测定根腐病的粗毒素活性是可行的,能反映小麦品种的抗病特性,抗病品种经毒素处理其根长受抑制的程度比感病品种减少21.4%,芽长受抑制减少16.7%。

为了研究高压灭菌处理对根腐病菌毒素活性的影响,将毒素沪液在 1.5 气压下 灭菌 30 分钟,并以未灭菌的毒素沪液做对照,用同样的方法做小麦种子发芽试验,结果列于表 3。

表 3

高压灭菌处理对根腐病菌毒素活性的影响

处理	未高压灭菌毒素				高压灭菌毒素			
毒素浓度日	根长 cm	受抑制根占%	芽长 cm	受抑制	根长 em	受抑制根占%	芽长 cm	受抑制芽占%
水	6.6	_	2.6	_	6.6	_	2.6	_
浓缩粗毒素	0.6	91.0	0.5	81.0	0.8	88.0	0.7	75.0
含粗毒素 50%	2.0	60.0	2.5	. 3	1.4	80.0	1.5	44.0
含粗毒素 25%	3.7	46.0	2.7	_	3.0	45.0	2.4	30.0

由试验结果看出,高压灭菌对根腐病菌 粗毒素活性无甚影响。可见将根腐病菌毒素 加入培养基中灭菌进行抗病突变的离体筛选 是可行的。

小麦根腐病菌粗毒素对病原菌的抑制作用。利用经高压灭菌的根腐病菌物 毒素 对

Bipolaris sorokiniana、Curvulaia lanata、C.orgzae、Puccinia lecondita 夏孢子进行处理,分别于12小时、24小时和48小时后镜检孢子萌发情况,10×10倍下检查两个视野,其结果列于表4。

由试验结果看出,灭菌处理后的小麦根

表 4

小麦根腐病菌粗毒素对病原菌孢子萌发的影响

处理	毒素	长处理的病原菌孢	子.	水处理的病原菌孢子			
病 財 同	12 小 时	24 小 时	48 小 时	12 小 时	24 小 时 48 小	时	
Bipolars sorokiniana	0	0	0	萌发 .			
curularia lanata	0	0	0	萌发			
O. Orgzae	0	0	0	萌发			
Puccinia lecondita	0	0 ·	0		萌发		

腐病菌毒素能够抑制病原菌孢子的萌发。

小麦根腐病菌粗毒素的回接效果。为了 进一步研究根腐病菌粗毒素对小麦植株的作 用,进行了粗毒素的回接试验。取经高速离 心分离的粗毒素上清液高压灭菌后,加少许 金钢砂涂抹小麦,叶片用蒸馏水加少许金钢 砂涂抹做对照。待叶片充分发病后调查发病 情况,试验表明,涂抹粗毒素的叶片出现了 大量褐色病斑与接种根腐病孢子后产生的病 斑相同,而蒸馏水涂抹接种的未出现病斑。 可见根腐病菌对叶片的危害,主要是病原菌 产生的毒素引起的,同时也证明了高压灭菌 未影响毒素活性。