大豆施肥技术及植株营养指标的研究

陈 霞 丁希明 王而力

(黑龙江省农科院大豆研究所)

黑龙江省是大豆的主要产区和大豆商品出口的重要基地。大豆产量的高低直接影响到大豆总产的波动和大豆出口任务的完成。为了提高大豆产量,除选育优良品种,采用适宜的栽培技术措施外,还必须进行施肥技术的研究。从生态学关于能量和物质的循环,转化观点来看,欲从生态系统中取得大量的形式来实现的),必须向生态系统中补给足量的能量和物质(补给的能量和物质是通过施用有机肥、化肥和机械能的形式来

实现的)。这样,才能够保证生态系统中的能量流和物质流的持续循环,高效地进行下去,获得作物高产稳定。由此看来,为获得大豆高产,必须为大豆生长发育创造良好的营养条件,应用植株营养诊断方法,掌握大豆植株各部位在不同生育时期养分的吸收及转化状况,并以此为基础来指导合理施肥。

一、试验材料与方法

试验地土壤为本院淋溶黑土,基础肥力情况(见表1)。

表 1

本院淋溶黑土的化学性质

项目层		破解级	全 磷	速效磷	逐 效 钾	有 机 屃	pН
次	(%)	(mg/100g土)	(%)	(mg/100g土)	(mg/100g土)	(%)	<u> </u>
0 20cm	0.140	14.23	0.112	9.35	18.50	2.79	6.7

琴 3

该试验 1982 年设 6 个处 理, 1983 年设 4 个处理 (见表 2、表 3)。

表	2 试验处理 (1982年)
序号	6 5 選
1	马类1500公斤+磷酸二铵25公斤/亩
2	马粪2500公斤+P7公斤/亩
3	马粪500公斤+P4.3公斤/亩
4	N2.9公斤+P5.8公斤/亩
5	N5.8公斤+P11.6公斤/亩
6	OK

		—————————————————————————————————————	(1900)
	序号	处	理
	1	马粪500公斤+尿素20公斤	+三料过石25公斤/亩
	2	马粪2500公斤+磷酸二铵15	公斤/亩
	3	马粪1500公斤+尿素15公斤	+ 三料过石30公斤/亩
•	4	ОК	

试验处理

(1983年)

试验品种为绥农四号。分别在大豆生长 发育的分枝期,盛花期,结荚期,鼓粒期作

植株全量养分(全氮、全磷、全钾、总糖) 和速效养分(氨态氮用纳氏试剂法,硝态氮 用酚二磺酸法,速效磷用钼兰法)测定。

二、试验结果

(一)不同处理对植株营养体生育状况的影响及与产量的关系

由于施肥方法和施肥量不同,植株营养体长势有很大的差异,且形成产量的高低也不同。四个生育时期八个调查项目的结果表明:有机肥和化肥配合施用的处理植株高大,茎、叶、叶柄、生长点以下三节的鲜干重及叶面积指数都高于单施化肥的处理。施肥量在N2.9公斤—13.2公斤、P2O₆5.8公斤—16.0公斤范围内,肥料用量高,植株长势好,形成产量高。

(二) 氮、磷肥用量与产量的关系

对 1982 年的试验结果 (见 表 4) 进 行 了统计分析,得出有效氮、磷量与产量的回 归方程为:

表 4 不同处理的有效氮磷量及产量

序号	有效氮、磷量	氮磷比例 (N: P ₂ O ₅)	产 量 (公斤 /亩)
1	N13.2公斤+P ₂ O ₅ 16.0公斤	1:1.2	199.0
2	N14.5公斤+P2O514.5公斤	1:1	188.7
8	N2.9公斤+P2O65.8公斤	1:2	191.4
4	N2.9公斤+P2O85.8公斤	1:2	179.7
5	N5.8公斤+P2O511.6公斤	1:2	180.7
6	不施肥	•	169.4

从处理 3 与处理 4 比较来看,虽然两处 理氮、磷有效成分数量相同,但处理 3 是以有 机肥与化肥混合施用,处理 4 单施化肥,处 理 3 产量高于处理 4, 可见, 有机肥与化肥配合施用效果较好。

(三) 植株养分含量与产量的关系

大豆不同生育期植株体内养分含量的多 寡与最终形成产量的高低有密切关系。

1. 速效磷含量与产量的关系及整个生育 期内的变化规律

表 5 所列试验数据表明: 分枝期叶中、结荚期茎中、鼓粒期茎中, 荚中速效磷含量与产量呈正相关, r值分别为: 0.9187, 0.7067, 0.9609, 0.7379。可见, 在生育期内设法提高植株速效磷含量对产量的形成会产生好的影响。

在整个生育期內,植株速效磷含量有逐渐增加的趋势,至鼓粒期达高峰,可达941 ppm (见图1)。

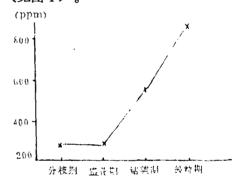


图 1 大豆不同生育时期植株速效磷含量变化

2. 氨态氮含量与产量的关系及整个生育 期内的变化规律

表 6 所列资料表明: 鼓粒期叶柄中氨态 氮含量与产量呈负相关, 1982 年 和 1983 年 试验结果 r 值分别为: -0.8536 和-0.8480, 这是由于此期叶柄中的氨态氮转移至子实中 形成蛋白质的缘故。

在各个生育时期植株氨态氮含量的变化规律(见图 2)。盛花期和鼓粒期植株氨态氮含量低,分别为 287ppm 和 185ppm。结荚期是氨态氮积累的最高时期,达 556ppm。

3. 硝态氮含量与产量的关系及整个生育 期内的消长规律

盛花期茎中, 结荚期叶柄中硝态氮含量

1982年			1983年						
1	生育期 速效磷含量	结 荚 期		生育 速效磷含量 (ppm)	期 分枝期	鼓 *	並 期		
(ppm) 量 (公斤/亩) 理		(茎中)	产量 处 (公斤/亩) 理		(叶中)	茎中	英中		
1	199.0	626.7	1	.152.4	3412	664	1632		
2	188.7	544.0	2	142.2	3260	520	1504		
8	191.4	492.0	8	139.8	2688	388	1312		
4	179.7	454.7	4	131.3	2284	328	1416		
5	180.7	520.0							
6	169.4	492.0							

表 6

不同处理鼓粒期植株氨态氨含量及最终产量

1982年				1983年				
*	生育期 NH ₄ —N 含量 (ppm)	鼓 粒 期	7**	生 育 期 NH ₄ —N 含量 (ppm)	鼓 粒 期			
	【公斤/亩)	(叶柄中)	处理	【公斤/亩)	(叶柄中)			
1	199.0	77.3	1	152.4	360			
2	188.7	94.7	,2	142.2	. 376			
8	191.4	122.7	8	139.8	632			
4	179.7	120.0	4	131.3	692			
Б	. 180.7	152.0		1				
6	169.4	156.0	1					

表 7

不同处理各生育期植株硝态氮含量及产量

	年 分 生育期		1988年	
		盛 花 期	结 荚 期	鼓 粒 期
处	綦(公斤/亩)	茎 中	叶柄中	叶 中
1	152.4	636	144	32 56
2	142.2	736	300	2824
8	139.8	760	504	2376
4	131.3	1040	376	2784

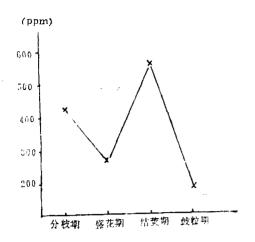


图 2 大豆不同生育时期植株NH₄-N 含量变化 与产量呈负相关, r值分别为-0.931和 -0.7179。 数粒期叶中硝态氮含量与产量成 正相关, r值为 0.6269(见表 7)。

整个生育期内, 植株硝态氮含量最高时 期为盛花期,达2636ppm。最低时期为分枝 期和结荚期, 分别为 387 ppm和 286ppm。

4. 植株全磷含量与产量的关系

2000 1400 800 200 分枝捌 盛花期 结荚期

(magg)

3200

2600

图 8 大豆不同生育时期植株No₃-N含量变化 表 8 所列资料表 明. 分 枝 期 叶 中 r= 0.9022, 根中 r = 0.9773, 盛 花 期 茎 中 r=0.8566, 叶中r=0.9838, 结荚期叶中 r=0.8236, 鼓粒期茎中 r=0.9042, 根中 r=0.9881, 全磷含量与产量呈正相关。与 植株速效磷含量与产量的关系有 相似的 规 律。

涉粒期

表 8

不同处理各生育期植株全磷含量及产量

	年 分生育期				19884	F		
<i>→</i> #	全磷含量 (%)	分札	支 期	盛 7	艺期	结荚期	鼓	並 期
处理		叶中	根中	茎中	叶 中	叶中	茎 中	根中
1	152•4	1.188	0.794	0.485	0.738	r.831	0.363	0.310
2	142.2	0.713	0.620	n.465	↑. 663	0.763	0.352	0.243
8	139.8	0.769	0.640	0.400	r.654	0.723	C.289	0.213
4	131.3	0.658	0.527	0.400	0.619	0.744	0.200	0.178

5. 植株全氮含量与产量的关系

分枝期叶中全氮含量与产量呈正相关, 鼓粒期茎中全氮含量与产量 呈 负 相 关。此 外, 我们还对植株各部位在不同生育时期作 了全钾、总糖等项目的测定。没有得出明显 的规律性。

主要参考文献

1〕 J.B. sartajn 等,根据土壤浸提液和植株组织 养 分 含量分析大豆使用磷、钾肥的产量效 果, 国外农 学 — 大豆, 1981年, 第1期

- 〔2〕 藤田耕之辅等。化合氮素对大豆氮素固定、吸收、 运转的影响, 国外农学---大豆,1983年,第1期
- (3) A.B. Baxmucton, 大豆施 用 NPK 最 佳 总 量 和 NPK 比列的确定, 国外农学 --- 大豆, 1983年,
- 〔4〕 李淑贞等。不同施肥方法对大豆结瘤、固氮和产 量的影响,大豆科学,1983年2卷,第8期
- [5] 加藤泰正,大豆生长及氮素运转,国外农学——大 豆, 1984年, 第2期
- 〔6〕 杉原进。大豆高产的氮素营养, 国外农学——大豆, 1982年,第1期