野生半野生栽培大豆及其小豆、绿豆 的酯酶同工酶酶谱的比较研究*

张开旺 雷勃钧 卢翠华 尹光初 (黑龙江省农业科学院大豆研究所)

林忠平

(中国科学院植物研究所)

摘 要

利用聚丙烯酰胺凝胶电泳,对野生大豆(G.Soja)、半野生大豆(G.gracilis)、栽培大豆(G.max)及其亲缘种进行了幼苗酯酶同工酶分析,结果表明,大豆幼苗酯酶同工酶酶带明确,具有种的特一性。本文对野生、半野生、栽培大豆的酯酶同工酶进行了比较和讨论。

前 言

植物同工酶在植物研究中应用 很广 ⁽²⁾, ⁽⁵⁾ 6, ⁽⁶⁾ 6, ⁽⁶⁾ 近年来的研究充分表明, 植物同工酶酶 谱研究, 对植物分类、物种起源与进化、植物杂种的鉴定和杂种优势预测, 及其染色体基

因定位等研究,都有重要意义[2,4]。

我们从1982年开始,对野生、半野生、 栽培大豆及其小豆、绿豆的过氧化物酶同工 酶和酯酶同工酶酶谱进行了比较研究。今年, 我们采用了聚丙烯酰胺凝胶电泳法,比较研 究了大豆属及菜豆属中的小豆、绿豆的酯酶 同工酶酶谱差异,探讨从野生到栽培的演化 趋势,以便更好地研究利用大豆品种资源和 野生资源。本文报导这些研究的部分结果。

材料与方法

(1) **实验材料:**供试材料包括栽培大豆, 野生大豆,半野生大豆,还有小豆(龙一号)、 绿豆(龙75—3213)等共19份材料(麦1)。

供 试 材 料

样 品 号	供试材料	样品号	供 试 材 料	样品号	供 试 材 料		
1	黑河 54	8	黑 豆	15	龙 79—4502		
2	合丰 22	9	龙 7906021	16	龙 79—4204—4		
3	3 牡丰 5 号		龙 79-3311 17		龙 80-4001		
4	四粒黄	11	龙 79—6601	18	龙 79—6617		
5 龙小豆1号		- 12	龙 79—5404	19	龙 79—0620		
6	6 青豆		龙79—6317—2				
7	绿豆	14	龙 79-0701				

注, 1、2、3、4、6、号为栽培豆, 8-12号为野生豆, 13-19为半野生豆,

(2) 酶液制备:将豆种用清水冲洗干

净,清水浸种使之于培养箱(26℃)中萌发

※ 本研究得到王连铮副研究员的指导帮助, 遊此致谢。

(野生种子需剪破种皮),三天后取萌发的幼苗,去子叶,每克鲜重加3毫升去离子水,低温下研磨成匀浆,3500转/分离心25分钟,取上清液于冰箱中保存备用。

(3) 电泳及染色: 采用薄层垂直板聚丙烯酰胺凝胶电泳法,分离 胶浓度 7.3%,成层 胶浓度 2.5%,电极缓冲系统采用低离子强度的 Tris—甘氨酸系统(Tris 0.62克,甘氨酸 0.2克,加水至 500 毫升,pH8.7)。每样品 2 毫安电流,于冰箱中 (4℃)电泳 2 至 3 小时。待电泳完毕后,取下胶板于醋酸——α—奈酯——坚牢兰 RR 盐染液中 37℃ 保温 10 至 15 分钟。

结果与讨论

供试 19 个材料的幼苗所显示的酯 酶 同工酶酶谱 (见酯酶同工酶酶谱图 与表2)。通过酶谱的比较,从图表可以看出: 1. 各类供试材料在 A 区都有一条共同的谱 带,只是颜色深浅有差异;野生、半野生、栽培大豆在B 区基本上有 4 条共同的主要酶带 B₂、B₄、B₆和B₉,其谱带颜色深浅上表现出一定的差

异, B, 带上显示出野生到栽培的酶带逐渐加 深的趋势。2. 除 A 区与 B 区的共同谱带外, 在我们所试验的半野生材料 中,有两种情 况,接近野生的材料基本上具有野生大豆所 特有的两条酶带 B_4 与 B_5 , 而在接近栽培大 豆的半野生材料中,没有表现出 B,与 B。酶 带。3. 青豆所显示的酶带与栽培 种 基 本 相 同;黑豆所显示的酶带与野生基本一致;而 小豆(龙一号)、绿豆(龙75-3213),特别是 绿豆所显示的酶带与栽培大豆及各种野生、 半野生大豆完全不同。4. 在同一种大豆中, 我们选择具有不同形态特征的 4 至 7 个品种 或类型,它们之间在酯酶同工酶 上 也 往 往 表现出较大的差异,如栽培大豆黑河54 (样1)、四粒黄(样4)与合丰22(样 2)、牡丰5号在B区的第9条谱带上 表现出有或无的差别; 在 A, 带上, 接 近 野 生的半野生材料表现较深,而接近栽培的 表现较浅;同时,在 B 区的 谱 带 上,接 近 栽培的半野生材料无B4与B5酶带,接 近野生的 龙 80-4001 与 龙 79-6617 具 有 B4 与 B5 带, 而 龙 79-0620 无 B4 与 B5 酶

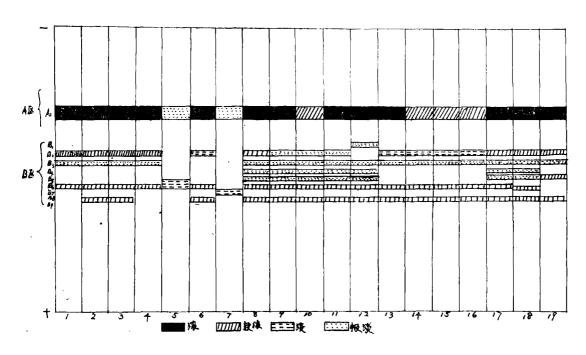


图 材料幼苗酯酶阿工酶酶潜图

供	试 材料	A ₁	\mathbf{B}_{1}	В3	${f B_3}$	$\mathbf{B_4}$	$\mathbf{B_{5}}$	\mathbf{B}_{o}	.B7	$\mathbf{B_8}$	В
1	黑河 54	++++		+++	+			+++			
2	合丰 22	++++		+++	+	-		+++	 -		+++
3	牡丰 5 号	++++		+++	+	-		+++			+++
4	四粒黄	++++		+++	+			+++			
5	龙小豆1号	+		<u> </u>			<u> </u>	++	'	—	-
8	背 豆	++++		++				+++			+++
7	绿豆	+						—		++	
8	黑 豆	++++		+++	+	+	+	+++			+++
9	龙 79-0602-1	++++		+	+	+	+	+++			+++
10	龙 79-3311	+++		+	+	+	+	+++	 -		+++
11	龙 79-6601	++++		+	+	+	+	+++/			+++
12	龙 79-5404	++++	+		+	+	+	+++	<u> </u>		+++
13	龙 79-6317-2	++++		++	+		l	+++	 .		++++
14	龙 79-0701	+++		++	+			+++		_	+++
15	龙 79-4502	+++		++	+		—	+++			+++
.16	龙 79-4204-4	+++		++	+			+++	-		+ + +
17	龙 80-4001	++++		+++	+	+	+	+++			+ + +
18	龙 79-6617	++++		+++	+	+	· +		+++		+++
19	龙 79-0620	++++		+++	. +		+++				+++

※++++液+++较液++淡+极液—— 缺失 带。

上述结果充分表明,大豆幼苗酯酶同工 酶酶谱有较为明显的种的专一性,对研究大 豆的进化、分类以及大豆种质资源的利用, 无疑会有重要的作用。我们将更深入广泛地 开展这方面的研究。

(上接64页)

五、小 结

(一) 玉米 2:1 间种草木樨,在玉米主 产区是解决增产缺肥、养畜少草的矛盾,实行 用养结合、农牧结合、增产增收好办法,是农 牧业综合发展的一条新途径,也是绿肥种植 方式上一大突破。

(二)这种种植方式,必须和畜牧业相结合,尤其是喂奶牛经济效益更高。

参考文献

- 〔1〕 莽克强。1975,聚丙烯酰胺凝胶电泳,科学出版社。
- 〔2〕 梅慧生: 1981, 植物生理学通讯, (3)。
- 〔3〕 虞京蒇等: 1983, 大豆科学, 2(2): 104-108。
- 〔4〕 赵玉锦等: 1984, 黑龙江农业科学, (5)43-44。
- (5) Gorman R.B.et al. 1977, Orop Sci. 17, 963-965.
- (6) Shaw, O.R. 1963, Science, 149: 936-943.

(三)为提高鲜草产量,草木樨要早播,一般麦播开始就可播种,播幅要20厘米以上,并要适当施些磷肥。有条件地方可进行冬播,冬播时要用带皮种子,并适当增加播量。割草时要注意留茬高度,一般以20厘米为宜。

(四) 玉米要选用高产,喜肥,耐密植品种,保证亩保苗株数,做到以肥保密,力 争玉米少减产。