前雨量较大,子粒形成期雨量较少。由于 4 月份播种的开花至成熟正处 7~8 月,雨量较多的季节,对产量影响最明显,而 5 月 20 日播种开花至成熟,正处在 8~9 月雨量较少季节,气温也渐低,有延长子粒形成时间的趋势。从三年试验资料分析看出:花器形成至子粒成熟天数与单株产量有极显著的关系,见图 2。

从图 2 来看:子粒形成过程天数长短与单株产量有极显著的关系,每延长一天单株增加子实 0.0033 斤,亩保苗 2,381 株计算,每亩可增加子实 7.86 斤。

经过几年的试验证明: 我省西部干旱地区,油用葵花播种时期在5月20日左右为

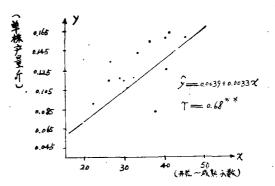


图 2 子粒形成天数与单株产量关系

宜,在正常情况下,物候指标是出苗在5月末,现蕾在7月中旬,开花在8月中旬,成熟在9月中旬,能获得较高产量。

试论马铃薯抗 Y 病毒育种*

肖志敏 王凤义

(东北农学院)

马铃薯是世界上五大作物之一,它为人类提供了营养丰富的粮食,历来为各国科研与生产所重视。但是,马铃薯是无性繁殖作物,易感多种病毒病,因此,给马铃薯育种和生产带来了一定的困难。近年来,国内外科学工作者从多方面研究了马铃薯的一些病毒病害,从病毒结构到生产无毒种薯均取得了一定的成效。尽管如此,选育抗病毒的品种仍为最有效的途径。

马铃薯病毒种类繁多,而且各种病毒对 马铃薯为害的程度也不同。所以,选育抗何 种病毒的品种就成了育种家们所共同关心的 问题。

根据国内外近半个世纪的育种和生产证明,无论是在国内还是国外,凡是在生产上长期利用的马铃薯品种,除采取极为严格的留种措施外,一般对马铃薯Y病毒都是高抗的。因此,本文就国内外几十年来马铃薯育

种的研究进展和马铃薯抗Y 病毒育种简述如下。仅供马铃薯育种工作者参考。

一、马铃薯 Y 病毒的寄主范围,传播途径及其为害性

Y病毒的主要寄主为马铃薯,还有烟草、蕃茄和甜椒等亦感染Y病毒(Оснисуи-кая 1938; Мимрофамова 1966、1967; Абдукарилова 1966; Молавам, Крысак 1967)。据 К. С. сухоle 等人研究: 龙葵、苷苦茄、菲沃斯、撞羽朝颜和酸浆也感染 Y病毒。Y病毒的潜伏媒介则为三叶草、碗豆和甘兰 (Христоle 1967)。

Y 病毒的传播途径主要有两个,即蚜虫 传播和接触传播。现有资料表明,可传播 Y

[※] 本文曾蒙东北农学院李景华教授、黑龙江省克山农业科学研究所崔荣昌所长的审阅与修改,在此表示谢意。

病毒的蚜虫有以下几种:全部叶蚜、桃蚜、鼠李蚜、豆蚜和马铃薯蚜虫。而桃蚜则是其中最有效的传播介体。蚜虫传播Y病毒的效率取决于感病植株上蚜虫的饲毒时间。Y病毒是非持久性病毒,通过田间防蚜是无法控制Y病毒的传播。林长春研究脱毒薯感染病毒的试验时发现,男爵脱毒薯暴露种植的第一

年,在八月下旬就有极少数植株出现了Y病毒症状,第二年感染病毒的植株高达60%,到"第三年几乎为100%,在生产上根本无法利用。而高抗Y病毒的克新四号,感染Y病毒的株率则很低,并且脱毒薯与未脱毒薯的块茎产量仅相差8%,见表1。

从 О、С、Кадида 和 Э、Н、Андреева

表 1 脱毒薯与未脱毒母薯比较

(林长春 1982 年)

处 珍	且 品 种	感染病毒种类	病毒诛率%	株高(厘米)	亩产量(斤)	产量%	大薯率%
脱毒薯	男爵		0	54	4774	258	92
母薯(CI	٧ (٢	A、S、X、Y 及東顶	100	27	1848	100	69
脱毒	事, 米拉	·	0	62	4393	281	73
丹薯(CI	٧ (ک	X、Y 及東页	100	43	1566	100	19
脱霉草	京 克新四号	X 带毒体高抗 y 病毒, 感PLRV	0	51	3471	108	81
母薯(CI	(Z)	X 带毒体高抗 y 病毒, 感PLRV	10	46	3219	200	81

(1964)的研究结果中也得出了相似的结论。 他们种植的无毒薯 "早普利"第一年感染 Y 病毒就达 30~70%,在以后的世代中感染达 到 100%。宫国璞(1980)做的脱毒试验中, 也发现不同品种由于对Y病毒抗性的不同, 其退化速率也有所不同。

二、**Y**病毒与其它病毒种类的关系

从以上一些人的研究结果可以看出,感染Y病毒的品种退化速率很快,造成这一现象的主要原因就是由于Y病毒的广谱性混合

表 2

在白俄罗斯马铃薯感染 Ÿ 病毒的情况

tile	K.	调查的		感染植株的平均百分比									
地		品种数	Y病毒	Y + S + X + M	Y + X + S	Y + X	Y+S	Y + M	Y + S + M	Y + X + M	Y		
北	1077 1777	21	18	3	3	5	2	1	1	1	2		
坤	部	24	24	8	4 .	6	3	2	1	2	3		
ĬÄĬ	部	6	29	4	5	7	3	3	2	3	3		

侵染所决定的。也就是说:除A病毒外,Y病毒可以和马铃薯花叶病毒中的任何一种协合侵染、从而加剧了感染Y病毒的马铃薯品种的退化速度见表2、表3。

从表 2、表 3 可以看出无论是在苏联的白俄罗斯,还是中国的京津地区,Y病毒常常是和其它花叶病毒进行协合侵染的。在白俄罗斯感染Y病毒的马铃薯品种数平均为18~29%,其中没有复合侵染的仅为 2~3%。

表 3 春播样品的鉴定结果 (高湘玲,北京,1982)

n 51	感芽	中 类		
品种	X	Υ.	s	
丰收白	+	+	-	
Univers	_	+	*	
CIP-66-8		+	+	
深眼窗	+	+	+ .	
桑日公社白皮	+	+	+	
Colmo	+	. +	ń	

三、世界上一些国家的马 铃薯主栽品种的感染 病毒种类状况

从世界各国马铃薯育种工作的实践和生产中可以看出,凡是对 Y 病毒具有一定抗性复合侵染 X 病毒不产生皱缩花叶症状的马铃薯品种大都退化轻,在生产上利用的时间较长。这同品种及其亲本对 Y 病毒的抗性是分不开的,见表 4 、表 5。

从表 4 可以看出,在世界一些马铃薯生产国家中占面积最大,种植年限最久的品种对Y病毒都有一定程度的抗性。例如,英国品种"King Edward" 1902 年育成,由于高抗Y病毒,至今种植面积在英国还高居第二位。而其中面积最大的"Pentland crown" 现在仍有扩大面积的趋势(1960 年为 16 万英亩,1968 年为 52 万英亩,1970 年 为 109 万 英亩,1972 年为 114 万英亩)。

同样,在中国种植面积大,使用时间长的一些品种也属于高抗Y病毒类型。如克新

表 4

世界一些国家主栽马铃薯品种感染病毒的种类

国	别	调查年份	品种名称	占该国马铃薯 总面积百分比	育 成 或引入年代	感染病毒种类
英	国	1976	Pentland Crown	18.7	1959	抗PLRV、Y,感X
英	国	•	King Edward	12.8	1902	抗Y病毒
荷	±	•	Bintje	32.6	1910	A 病毒免疫,高抗 PLRV
加 美	国	,	Kennebec	19.8	1948	抗A、Y,感 PLRV、X、束顶

表 5

荷兰部份马铃薯品种抗病毒的种类

名 称	免疫	高抗	感	染	名称	免疫	高抗	感染	备注
阿加克斯 Ajax	A	Y			布兰卡 Blamka	_	Y	PLRV	
阿克马利亚 Alcmaria	-	Y	, <u> </u>		卡迪诺 Cardinal	A	-	_	
阿尔法 Alpha	-	_	PLRV		卡利那 Carina	A	Y	-	
阿敏卡 Aminca	-	Y,A	_		克利迈克斯 Olimax	A	PLRV	Y	极早熟品种
阿努斯它 Anosta	-	Y,A	_		卡尔摩 Colmo	-	Y,A	_	
阿波罗尼亚 Apollonia	-	Y,A	PLRV		底赛瑞 Desirec	-	Y,A	_	
阿卡 Arka	-	A	_		达瑞萨 Daresi	_	Y,A	_	
阿兰班诺 Arran banner	_	A	_		多尔 Dore	-	PLRV	Y,A	
巴拉卡 Baraka	A	Y	_		埃巴 Eba	_	Υ	_	
比耶 Bea	-	Y			埃德金那 Edzina	A		_	
宾杰 Bintje	A	_	PLRV		埃斯特林 Ersteling	A	PLRV	Y	极早熟品种
					总 数 22	9	抗Y 13 抗A 8 抗PLRV 3	PLRV 4 Y 3 A 1	抗Y品种占 59%

一号,1958年由黑龙江省克山农业科学研究所育成,据1980年统计,其面积已达780万亩,居全国首位。东农303(对Y过敏,肖志敏1984年鉴定结果)在哈尔滨种植18年之久,仍保持优良种性。当然,并不否认该品种的一整套留种措施的作用,直到目前这一品种病毒病症状轻微,长势好,种植面积还有进一步扩大的趋势。而目前在西欧种植面积很大的一些品种,如阿克塞根(Ackersegen)、鲍纳(Bona)、沙比纳(Sabina)和爱德哥尔(Erdgold)等品种,由于严重感染 Y^N 株系将失去栽培价值。

从表 5、表 6 中还可以看出, 荷兰推广

的品种,其中抗 Y 病毒的占 59%,而中国推广的主栽品种中,抗 Y 病毒的占 78%。表7表明,我国几乎所有在生产上推广面积大,种植年限长的品种,都有一个高抗 Y 病毒的亲本。这也可以从暴成光 (1980年)、姜兴亚 (1980年)、梁德林 (1980年)等人的研究结果中证实。他们认为有以下优良杂交组合:男爵×292-20、白头翁×Apta、燕子×卡它丁、阿奎拉×卡它丁等。这些组合中至少有一个亲本是高抗Y 病毒的。而且其中的燕子和 Apta 两个亲本还高抗Y** 株系。这说明、对Y 病毒的抗性可以稳定地传给后代。

表 6

中国部份主裁马铃薯品种感染病毒种类

п «		品种感染病毒种类					
品 种	亲 本 来 源	x	Y	s	PLRV		
丰收白	小叶子×被兰一号	+	_	+			
郑薯二号	白头翁×克新二号		-		+		
克新一号	374-128×波兰一号	+	-		+		
克新二号	徳友一号×波兰一号	+	+		+		
克新三号	德友一号×卡它丁	+	+		_		
克新四号	白头翁×卡它丁	+	-		+		
东农 303	白头翁×卡它丁	+	-	+	+		
金坑白	白头翁×克新二号		-	1	+		
呼薯1号	. 克新二号×丰 15/292-20		-				

^{* +} 为感染病毒, - 为对某种病毒高抗, 空格为感染病毒种类不清。抗Y病毒品种占所有品种的78%。

表 7

马铃薯栽培品种的杂交亲本感染病毒情况

ىد سد			感	更或 抗 频	方毒 种类	È
亲 本	X	· Y	A	s	PLRV	PSTV
小叶子		_			+	·
白头翁	+	-	_	+	+	
波兰一号		_		:	-	
徳友一号	+	+			+	-
卡它丁		-	-	+	+	
克新二号	+	+			· +	÷
374 - 128	+	-				

^{*}表中各符号同表 6。抗 y 亲本占所有亲本的 71.4%。

四、抗**Y**病毒在马铃薯育种 和生产上的重要意义

自七十年代, 黑龙江省克山农科所提出

抗Y 病毒育种以来,国内一些育种单位在这 方面作了大量工作。他们的作法主要是选择 对Y病毒高抗的材料做亲本。其原因是Y 病 毒是广谱性的,除了 A 病毒以外,它可以和 任何一种马铃薯花叶病毒协合侵染。马铃薯 A 病毒是Y 病毒的畸变株系,一般情况下, 抗Y 病毒的材料也抗 A 病毒,这就更说明了 抗Y 病毒育种的重要性。

在实生薯和脱毒薯的生产利用中,也应如此。目前国内外的一些研究材料表明,实生薯当代的产量是比块茎作种薯的产量低20~30% (Peloquin, 1984年),但利用实生薯作为种薯则是大有前途的。实生薯生产中所用的亲本也要对了病毒具有一定的抗性,使实生薯和其亲本在生产利用中不致于因感染了病毒而急速退化。而在脱毒薯利用方面,则一定要选择高抗了病毒的品种作为脱毒材料,只有这样才能延长脱毒薯的利用年限。而选用类似男爵这样易感染了病毒的品种,除非采取极为严格的保种措施,否则在生产上意义不大。

除了病毒外,在我国马铃薯生产上还有几种为害较大的病毒,如马铃薯 纺 缍 形 类 病毒 (PSTV)、马铃薯卷叶病毒 (PLRV)等。但是,它们对于马铃薯生产的为害程度是远低于马铃薯 Y 病毒的。所以我们认为马铃薯抗Y病毒育种不论是在马铃薯育种、实生薯利用,还是在脱毒薯利用等方面都是具有重大意义的。

主要参考文献

- (1) 李景华,中华人民共和国利用实生种子进行食用和种用马铃薯生产,马铃薯,1980,第1期。
- [2] 樂德霖,马铃薯品种间杂交育种的实践与体会,马铃薯,1980,第1期。
- [8] 暴成光, 马铃薯育种工作的, 几点体会与设想, 马铃薯, 1980, 第1期。
- [4] 姜兴亚,有关马铃薯育种的 凡 个 问 题,马铃薯、 1980,第1期。
- [5] 林长春,马铃薯茎尖脱毒薯的综合分析及在生产上的应用,马铃薯科学,1982,第2期。
- [6] A. J. Amópoeon 1975, 马铃薯病毒和病毒病害,马铃薯, 1981 增刊,李克来译。
- [7] 唐洪明,马铃薯抗病毒育种研究概况, 吳餘薯,1982 增刊。
- [8] 荷兰马铃薯品种简介,国外农学杂粮,1982 第2期。
- [9] (苏) C. M. 布卡索夫, A. H. 卡美拉兹著。 马铃薯育种和良种繁育,李克来、唐洪明、李天然译, 内蒙古马铃薯科学研究中心编辑室。
- [10] (英) P. M. 哈里斯主编,马铃薯改良的科学基础, 蒋先明、田玉丰、赵越等译,农业出版社。
- [11] (苏) R.B. 赫沃斯托娃、N.M. 雅什娜主编,马铃薯 遗传学, 唐洪明、李克来译, 农业出版社。
- C123 A. C. Macaso-Khwaja 和 S. J. Peloquin 1983
 Tuber yield of families from open pollinated and hybrid true potato seed
 American Potato Journal 1983, Vol. 60,645-651 页。

农副产品辐射贮藏保鲜技术概况※

刘德方

(黑龙江省科学院技术物理研究所)

当前,农副产品贮藏保鲜技术很多,诸如冷冻(包括速冻)、低温、气调、低气压、辐射、化学药剂、高湿、高温、脱水、被膜等等贮藏保鲜技术。本文仅就辐射贮藏保鲜技术的国内外概况作一简单介绍。

所谓辐射贮藏保鲜技术主要指利用射线 (主指γ射线) 辐照及其复合处理,抑制某 些农副产品的新陈代谢过程,减弱它们的呼吸强度,减少其底物损耗,或者利用射线辐照及其复合处理,对农副产品起到杀虫、灭菌、消毒、防霉、防腐的作用,以延长其贮

[※] 本文请省科学院技术物理研究所副研究员肖度元 同志和省农科院原子能所所长王子文同志审稿, 特此致谢。