谷子杂种F₁、F₂代早熟性遗传研究与分析

郭德仁 王光玲 于延祚 杨兆英

(黑龙江省农科院嫩江农科所)

内容摘要

谷子早熟性属数量性状,选用熟期不同的亲本杂交,其 F_1 代受早熟亲本影响较大。 双亲抽穗期差值愈小,愈易产生超早后代,随双亲抽穗期差值的加大, F_1 代抽穗期逐渐接近双亲中值。 F_1 代与双亲抽穗期均值相关密切,其相关系数为 0.8208,回归系数为1.315。晚熟亲本对 F_1 代熟性有一定的制约作用。各类组合 F_1 代优势高低的 顺序是:晚×早或早×晚→晚×中→晚×晚,杂种平均优势为-2.70。

F₂代抽穗期呈连续变异,也出现超亲遗传现象。谷子抽穗期遗传力较高,平均为86.6%,早期世代选择有效。不同亲本早熟性遗传传递力不同。在育种工作中,应注意双亲抽穗期有一定的差值并接近当地生育期为宜。

谷子早熟性是高产稳产的基础,随着农业生产水平的提高、迫切需要从研究早熟性入手,探讨高产的途径,那么亲本熟性差异大小如何制约后代熟性分离趋势,选择机率多大?选择效果如何?各类组合的遗传动态怎样?这些都是需要我们迫切解决的问题,为此,我们对亲本的熟性遗传规律进行了初步研究。

一、材料和方法

供试材料选用我所培育的嫩74-5134-

18、嫩74-5121-52、嫩74-5134-16、嫩74-5133-2、嫩686-11、嫩70-3127 等品系及德都黄沙 子,早谷一号、黑谷一号、克育18、安谷 18、嫩良 68-5等共十一个主要亲本配制的 20 个组合。

田间设计采用按组合顺序排列,亲本种植一行, F1 代根据种子量种植 1~3 行,行长 4.0 米, 无重复, F1 代及亲本定点调查并进行室内考种,取其平均值。F2 代在抽穗前定点选择一跑米,逐株调查抽穗期,挂牌记载日期,并按频数计算方差,估算遗传力。

计算杂种优势采用公式为:

1. 杂种优势(%)

2. 超亲优势(%)

$$=\frac{F_1 \text{ 平均值} - \text{HP 平均值}}{\text{HP 平均值}} \times 100$$

采用方差法估算 F₂ 代抽穗期广义 遗传力

$$h^{2}(\%) = \frac{\sigma^{2}F_{2} - \frac{1}{2}(\sigma^{2}P_{1} + \sigma^{2}P_{2})}{\sigma^{2}P_{2}}$$

公式中的 MP 代表双亲平均值 HP 代表早熟亲本平均值 h^2 代表广义遗传力 $\sigma^2 F_2$ 代表 F_2 代杂种群体表现型变量 $\sigma^2 P_1$ 和 $\sigma^2 P_2$ 分别为双亲表现型变量 $\frac{1}{2} (\sigma^2 P_1 + \sigma^2 P_2)$ 为环境变量估值。

为对生育期日数统计准确,以抽穗期早、 晚作为熟性的标志。

• 9 •

二、结果与分析

(一)熟性不同亲本杂交,早熟性遗传 趋势:

1. 倾早遗传现象:

在11份亲本材料中,有早亲熟本6份(生育期小于105天),中熟亲本2份(生育期106~115天),晚熟亲本3份(生育期116~130天),以晚熟材料为母本,以早熟材料为父本配制7个组合,以早熟为母本,以晚熟材料为父本配制6个组合,以晚熟为父母本,配制3个组合,他们的杂种一代出现的生育期类型(如表1)。

不同生育期类型亲本杂交 F,

~ ·		14%		-4 -76 JJ	~~~			
组合类型	/C A 384	同意	矢本	超日	中	型	超晚亲	
	组合数	晚亲	早亲	早亲	偏早	中间型	偏晚	起吃水
晚×早	7			3	2	2		
晚×中	4			3	1			
晚×晚	3	1	2		1			
早×晚	6		1	1	4			
总计	20	1	3	7	7	2	0	0
占总数%		5.0	15.0	35.0	35.0	10.0		

从表1可见,各类组合以出现中间型较多,有九个组合,占总数的45.0%,其中有七个组合偏早熟一方,占中间型组合的77%,其次是超早亲组合有七个,占总数的35.0%,同早亲组合的有三个组合,占总数的15.0%,

同晚亲的有一个组合,占总组合数的 5.0%,可见早熟性属数量性状,为不完全显性。

从表1还可明显看到,各类组合出现的超早、同早、偏早组合共计十七个,占总组合数的85.0%,说明各类组合都有倾早现象,受早熟亲本影响较大。即使晚×晚组合中,也能出现同早亲类型,但无超早亲组合出现。

2. 下, 代抽穗期与双亲平均 抽穗 期 显 著相关:

根据我们对 20 个组合的观察, F_1 代抽 穗期与母本抽穗期相关系数为 0.4440%,与 父本抽穗期相关系数为 0.418。双亲 平均 抽 穗期与 F_1 代抽穗期成极显著相关,相关系 数为0.8208,(自由度 N-2=18,P=0.01 时,理论r=0.5614) 其回归方程为:

y = -25.21 + 1.315x

可见 F₁ 代抽穗期与双亲平均抽穗期 有极 密 切的关系,因此,在培育中早熟后代杂种时,可以通过双亲平均抽穗期来予 测 F₁ 代的 熟 期范围。

3. 不同抽穗期亲本杂交遗传传递力的差 异:

F₁代抽穗期不仅与双亲平均 抽穗期 相关,而且与双亲抽穗期迟早的差数有关,我们按早、晚亲抽穗天数差值划分为 0~4天,5~9 天,10 天之上三组,看 F₁ 代熟期出现类型(如表 2)。

从表 2 可见,双亲抽穗期差值在 0~4

表 2

寿 1

双亲抽穗期差值不同对 🖺 代熟性的影响

项			0~4 天				5~9 天					10 天 之 上							
组合米	组合数	超	同	中	间	型	超	超	同	中	问	型	超	超	同	中	间	型	超
一类 型		早	早	偏早	中间	偏晚	晚	早	早	偏早	中间	偏晚	晚	早	早	偏早	中间	偏晚	早
早×晚(晚×早	13	4		1	2				1]						5			
中×晚	4	2						1		1									
晚×晚	3		2									1						!	
总 数	20	6	2	1	2			1	1	1]	1			Ì	5		1]	
占 %		3 0. 0	10.0	5.0	10.0			5.0	5.0	5.0		5.0		i 	1	25.0		_	

天时, F_1 代出现超早亲,同早亲 8 个组合,占 20 个组 合 的 40%,差 值 5~9 天时, F_2 代出现超早和同早亲的 共 有 2 个 组 合,占

总组合数 10%,差值在 10 天之上时,F1代 抽穗期基本无有超早和同早亲的,只有中间型偏早亲的5个组合,占总组合数的25.0%,

从而可见,双亲抽穗期差值愈小,愈易产生超早后代,随着双亲抽穗期差值的加大,下,代抽穗期逐渐接近双亲中值且偏早熟一方。由此可见.在培育早熟杂种后代中,要选配双亲抽穗期有一定差值,差值不易过小,越小越易产生超早后代,但丰产性能降低。因此,选用双亲抽穗期差值为当地生育期值对提高选择效果,具有一定的作用。

4. 不同抽穗期的亲本杂交其杂种优势不同。

对 20 个组合 F₁ 代进行优势分析, 从抽穗期看, F₁ 代大部份组合, 表现负向优势, 按各类组合平均优势为 - 2.70%, (按加权平均优势为 - 3.23%)。在 20 个组合中, 有一个组合无优势, 一个组合为正向优势, 其他为负向优势, 按各类组合统计优势情况(如表 3)。

从表 3 可见, 就优势的表现来看, 以晚 × 早和早 × 晚组合的优势高于晚 × 中和晚 × 晚组合, 一般说来, 随着抽穗期差数的加多, 杂种优势表现逐渐增大的趋势。但与亲本的

表 3 不同类型组合杂种优势的比较

組合类型	组合数	超學亲组合	杂种优势	超亲优势
晚×早	7	3	- 4.275	0.489
早×晩	6	1	- 3.73	1,52
晚×中	4	2	- 3.71	- 3,117
晚×晚	3	0	0.876	2.287
总数(平均)	20	6	- 2.70	0.2947

配合力也有关系,如同是嫩74-5134-18为母本,以嫩70-3127和嫩68-5为父本进行杂交,其杂种优势各为-0.71%和-4.96%,说明其优势与双亲的配合力是有关系的,所以,即使选用早熟亲本,也不一定选出理想的超亲组合来。故不仅要选好早熟亲本,而且需要有配合力强的双亲。

(二) 不同抽穗期亲本杂交 F, 代早熟性的表现:

1. 连续变异和超亲遗传:

不同抽穗期的亲本杂交,在 F₂代中呈连续变异并出现超亲遗传现象,我们重点分析了六个组合 F₂代熟性分离表现(见表 4)。

- 表 4

不同抽穗期亲本杂交 上2 代抽穗期出现频数

组合		世			七									J.	J		八			月	总
组合类型	组合名称	升	18	19	20	21	22	23	24	25	26	27	28	29	30	31	1	2	3	4	数
晚	嫩 74-5134-18	$\mathbf{P_{1}}$		ı			l					1	4	4	1		!	1		1	10
×	×	P				!	1	2	5	2		ļ									10
早	嫩 70-3127	F ₂		 		1	1	i	1	1	10	4	5	8	5	5	3	3			47
晚	74-5134-18	P_1		!			1	1		1	·	1	4	4	1						10
×	×	P_2		: 1	!	1	2	3	2	1		!									9
早	嫩 68-5	F_{2}		1		1	4		3	2	3	3	9	5	2						33
晚	嫩 74-5133-2	P ₁														2	2		5	1	10
×	×	$\mathbf{P_2}$								2	3	3		ĺ							8
早	嫩 70-3127	F,		1	1		3		4	5	3	5	2	3	3						30
早	德都黄沙子	$\mathbf{P_{i}}$								2	5	2	1				į				10
х	_ x	$\mathbf{P}_{\mathbf{z}}$	ĺ	ĺ									2	2	5	1				l	10
晚	74-5134-18	F2	ļ			1			3	1		1	11	9	2	7	2	1	1	1	40
早	德都黄沙子	$\mathbf{P_1}$								2	5	2	1	i							10
×	x	$\mathbf{P}_{\mathbf{z}}$									3	4	2	1	ļ	}					10
晚	嫩 74-5121-52	F ₂	1			1			3	4		7	6	2	8	3	2	1		1	39
中	早谷一号	P_1						2	1	4	2		1								10
×	×	P ₂							l Į	! ·		1	2	1	5						9
晚	74-5134 -18	F2		'		1		2	ĺ				1	6	5	8	7	2	2	3	37

从表 4 看出,不论那类组合,除了嫩 74-5133-2×嫩 70-3127 晚亲过晚而 F_2 代 没 有超晚亲之外,其他各组合 F_2 代的 抽 穗期,都包括双亲抽穗期的范围,并都不同程度的表现超早和超晚亲,可见 F_2 代抽穗期 呈 连

续变异并有超亲遗传现象。

以表 4 德都黄沙子×嫩 74-5134-18 (早×晚)的 F₂ 代与双亲抽穗期的分布为例,可明显看出 F₂ 代抽穗期即超早又超晚,其抽穗主要高峰处于双亲中间(见图 1)。

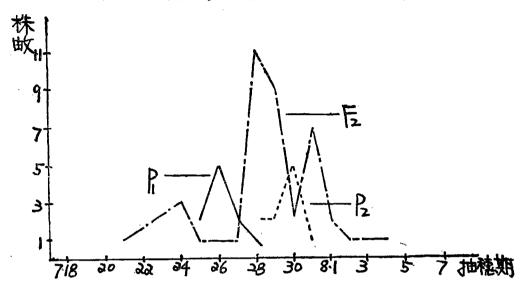


图 1 德都黄沙子×嫩 74-5134-18 (早×晚) F2 代与双亲抽穗期的分布

通过表 5 和图 1 可见,各组合 F₂ 代呈连 续变异并有超早现象,其中有的超晚,有的 等于晚亲,有的小于晚亲,但都表现超早现

象,再一次说明早亲对 F₂ 代起主导作用。但 不能忽视晚亲作用。

2. 亲本抽穗期不同对 F。代熟性的影响,

表 5

各类组合 F。代抽穗期分离表现

-	F.	代熟	调		F2代 =	由想非	身 分 宮	表 现		按生	产上:	划 分
组合名称	_	10.熱	查 株	超早	同早	中	间	型	超晚	早	中	晚
			数			偽 早	中间	偏 晚	A2 %	7-	1	
嫩 74-5134-18 ×	中	熟	47	2	2	14	13	10	6	4	37	6
嫩 70-3127	т	700	占%	4.25	4.25	29.8	27.6	21.3	12.8	8.5	78.7	12.8
嫩 74-5134-18 ×		熟	33	6	5	6	14	2		11	22	
× 嫩 68~5	早	***	占%	18.2	15.1	18.2	42.4	6.1		33.3	66.7	
嫩 74-5133-2		***	30	9	8	5	8			17	13	
× 嫩 70-3127	早	熟	占%	30.0	26.5	16.7	26.6			56.7	43.3	
德都黄沙子		-	40	4	1	1	20	9	5	5	30.	5
× 嫩 74-5134-18	中	熟	占%	10.0	2.5	2.5	50.0	22.5	12.5	12.5	75.0	1 2. 5
德都黄沙子		*4	39	5	4	7	6	2	15	9	15	15
× 嫩 74-5121-52	早	熟	占%	12.8	10.3	20.0	15.4	5.1	38.4	23.1	38.45	38.45
早谷一号		**	37	3			7	5	22	3	12	22
× 嫩 745134-18	中	熟	占%	8.1			18.9	13.5	5 9.5	8.1	32.4	59.5
总平均%				13.8	9.79	14.5	30.15	11.4	20.5			

从表 5 看出,不同抽穗期亲本杂交其 F₂ 代分离趋势仍以出现中间型较多,其次为超早和同早亲类型,六个组合平均计算,中间型共占 56%,早熟类型平均出现 23.59%,超晚仅占 20.5%,可见,在我们分析的这六个组合中,其 F₂ 代抽穗期分离 总 趋势,还是以中间型为主并趋向早熟一方。

3. 不同亲本杂交 F₂ 代早熟性 遗传 力 表现:

遗传力是可固定的遗传变量与表型变量 的比值,通过遗传力的估算,知道各组合的 遗传力均较高,也就是说,抽穗期这一性状 的遗传因素在表现型中占较大的成份,受环 境条件影响较小,遗传能力强,在低代选择 是有效的,由于各亲本的配合力不同,表现 出不同的遗传差异(如表 6)。

从表 6 可见, 六个组合 F_2 代抽穗期的遗传力都表现很高, 其中 以 德 都 黄 沙 子× 嫩

沒 6 不同杂交组合 F. 代抽種期 广义遗传力的估值

项目	遗传	环境	遗	传 力
组合名称	变量	变量	h2(%)	位次
嫩 74-5134-18×墩 79-3127	6.707	0.783	89.5	2
嫩 74-5134-18×嫩 68-5	7.204	1.111	86.6	4
嫩 74-5133-2×嫩 70-3127	6.872	1.400	83.1	5
德都黄沙子×嫩74-5134-18	6.664	0.894	88.1	3
德都黄沙子×嫩74-5121-52	9.792	0.917	91.4	1
早谷1号×嫩 74-5134~18	7.623	1.798	80.9	6
		,	86.6	

74-5121-52 最高为 91.4%,最低的是早谷一号×嫩 74-5134-18 为 80.9%,他们之间的差异是由亲本变异系数的大小决定的,变异系数大,说明亲本稳定性差,遗传力就低。因此,在早熟育种中,既要注意早熟亲本的选配,又要注意亲本稳定性的选择,更要考核双亲配合力的高低,只有这样,才能在杂种后代中、选出理想的早熟高产新品种。

订 正

《黑龙江农业科学》1981年第2期第5页第4行 "在表层黑土层上"订正为"在表层黑土层下,对白 浆土层等土层深松"。

《黑龙江农业科学》编辑部