我省农作物辐射育种主要成就及其展望

陈洪文 孙光祖 (省农科院)

我省农作物辐射育种工作,从1958年开 始, 先后各地区所、县农科所以及有些基层 科研室(站)等单位都积极开展了这项研究。 工作。据不完全统计,已选出小麦、大豆、 谷子、水稻、玉米、高粱、蔬菜等作物优良 品种20余个,新品系40多个。这些品种 (系) 大都具有早熟、高产、抗病、质佳和 杆强等特点,推广面积逐年扩大。小麦推广 面积达 100 万亩, 大豆 240 多万亩, 为我省 粮食增产做出了贡献。同时,在辐射遗传学、 辐射细胞学和诱变、选择方法等方面也开展 了一些工作,积累了一些经验。

一、辐射育种的主要成就

(一) 选出了早熟、高产的新品种

我省辐射育种的大量实验结果表明,不 少材料通过辐射处理之后, 在其他农艺性状 基本不变的前提下,成熟期可以出现从极早 到极晚的连续变异,一般来说有5~30天的 变幅,这对扩大品种的适应范围和抗御低温 冷害乃至稳定高产性能都是十分有利的。省 农科院克山农科所用钴60-r射线1.4万伦 照射"克交 56~4258"选出的"丰收 11 号" 大 豆,极早熟、高产、质佳,生育日数90~100 天,晚播生育日数60天左右,适合密植,是 我省北部地区高产栽培的主要品种之一。省 农科院大豆所用钴 60-r 射线 照射"东农41 号",选出的极早熟大豆品系"哈70~169", 比原品种早熟 25 天,比"丰收 11号"早熟

3~5天。辐射育成的大豆品种"黑农 4号", 比原品种"满仓金"早熟 10 天,增产 11.8%。 选出的"黑农6号"比原品种早熟5天,增产 12.5%。合江地区农科所获得的辐射突变系 "合辐 75~366" 较原品种早熟 20 天, "合辐 75~367"早熟19天。省农科院原生物室照 射杂交后代种子 选出的"新曙光1号"小 麦, 早熟、高产、杆强、抗倒, 比对照增产 24.7%。原子能利用研究室照射"松花江七 号"小麦选出的"龙辐76~3061"新品系,比 原始品种早熟 5 天, 亩产 536.7~669.6 斤, 增产 12.4~17.6%。 照射高粱"忻粱 7 号" 选 出的矮杆、早熟、高产的突变系"龙辐7~3", 生育日数 105 天, 比原品种早熟 15 天,亩产 800~1000 斤, 适宜机械化栽培。园艺所用 辐射育成的"9号白菜",早熟(生育日数65 天), 高产 (平均亩产 14,589 斤), 比"肥城 花"增产24.6%。

(二) 改进了作物品质

辐射不仅引起作物形态结构改变,而且 能引起出现生化特性的深刻变化,使作物的 品质得到显著改善。省农科院大豆所育成"黑 农 4号"大豆品种含油量 23.13%, 比原品种 高 1%。"黑农 5 号" 大豆含油量 22.8%, 比原 品种高 2.5%。原子能利用研究室育成的龙辐 76~306 小麦新品系, 蛋白质含量 15.16%, 赖氨酸含量 0.32%,分别比对照高 0.6%和 0.04%。园艺所育成的"9号白菜",除早熟、 高产外,还具有结球紧、味佳、耐贮等特性。

阿城一中用了射线照射蒜头育成的大蒜新品 系,个大、汁浓、味鲜、耐贮,深受贫下中 农欢迎。绥棱果树试验站育成的"19号大红 袍李子",平均果重17.8克,多汁、味甜、 微有香气。

(三) 提高品种的抗病性

辐射育种可以在较短的时间内获得抗病 新品种,这是常规育种所不及的。省农科院 原生物室用钴 60-r 射线照射"阿尔巴尼亚 2 号"小麦,选出了抗杆锈的突变系"1796"。松 花江水稻试验站用γ射线加微波处理晚熟的 "咸南 24"水稻品种, 选出的"咸南 24y+v" 品系,稻瘟病很轻,仅1级。原子能利用研 究室用r射线照射 "TWF9×门14/意二× 东火"玉米双交种,选出的高产自交系"龙 辐508", 抗大小斑病。用r射线加激光照射 "663"小麦, 育成的"218"品系, 抗根腐病, 叶部病斑1级。合江地区农科所用 r 射线照 射"合光6号"谷子选出的"南72~4"品系, 抗白发病。

(四) 增强作物的抗倒伏性

辐射引变可使作物茎杆变矮,韧性增强, 抗倒伏性提高。克山农科所用 r 射线照射"克 育1号"谷子育成的"71辐~106"新品种,茎 杆韧性显著增高,克服了原品种灌浆后倒伏 的缺点,亩产590斤,比原品种增产21.8%。 原子能利用研究室育成的"龙辐忻7~3"新 品系, 株高 90~110 厘米, 比原品种矮 30 厘 米,高密度种植也不倒伏。照射杂交后代育 成的小麦新品系"龙辐 75~2084", 杆矮(80 ~90 厘米),杆强,适于高肥足水栽培。

(五) 诱发雄性不育系

辐射可以使自交可育的作物产生雄性不 育,这为作物雄性不育系的选育开辟了一个 新途径。克山农科所用 r 射线照射 "克系 31 号"谷子,选出了"71 南~114~1"等三个不 育系,不育度为90%,不育株达100%。另 外, 还选出了"74B-9"等 20 余份达到"双高" 的不育系材料,为开展谷子两系研究提供了 物质基础。原子能利用研究室用X射线照射 "维尔 100×115B"玉米单交种, 选出了雄性 不育的新类型。

(六) 在辐射细胞学和辐射遗传学研究 上取得了进展。

细胞学和辐射遗传学是辐射育种的重要 理论基础,对于阐明突变的性质和原因,提 高辐射育种效率以及控制变异的方向等都是 不可缺少的。哈尔滨师范学院生物系在大豆 和小麦上进行了辐射细胞学的研究, 发现形 态变异较大的 M₁ 植株, 在花粉母细胞 第一 次减数分裂期,出现落后染色体、染色体粘 连、多价体、单价体、环状结构、偏极分裂 和染色体桥等异常现象。对 M2 代形态 异常 植株所进行的细胞观察, 也发现了类似于 M₁ 代染色体的异常行为和非正常染 色体 组 型。原子能利用研究室初步研究了小麦和玉 米突变体变异性状的性质, 即突变涉及的基 因数目及其之间的关系。如研究指出小麦"龙 辐 76~3061"的紫叶耳突变是一对基因控制 的显性突变, 白粒是两对基因控制的突变。 玉米"大黄化"和"210A"无叶舌直立型突变 体,经测交 F, 代显隐分离比分别为 10:1 和 5:1, 说明它们是不同对基因控制的隐性突 变。合江地区农科所研究了大豆早熟突变的 选择问题。得出 M₁ 代育性基本正常的 类型 与 M, 代早熟突变的相关系数 为 0.8703, 达 到高度显著平准,而半不育类型和混合类型 的相关系数均未达到显著平准。因此, M1代 选择基本正常的植株,M2代才有希望获得较 多的早熟突变体。

二、辐射育种的几点 基本经验

(一) 辐射与杂交相结合是提高变异 率,扩大变异谱,创造新类型的有效途径之

全省不少单位的辐射育种实践表明,杂 交与诱变相结合, 可以获得单一方法难以得 到的有利性状,扩大了变异范围,提高了育 种效果。省农科院原生物室用 r 射线处理"阿 勃 84"与"欧柔"杂交的 Fo 种子, Ma 代出现 的有益变异率比未处理的提高一倍多, 而且 扩大了株高、穗长、穗粒数、千粒重和成熟 期的变异范围。"新曙光1号"小麦就是从它 们后代中选出的。原子能利用研究室 1974~ 1977 年共照射了 90 个组合的 F₀ 种子, F₂M₂ 代入选率超过未照射对照的有45个组合,占 56.3%。入选率低于未照射对照的有13个 组合,占16.3%。松花江水稻试验站用r射 线照射"京引 66×干净稻"杂交后代, 选出的 "4020~20"和"4020~25"品系亩产分别为 847.1 斤和 840.4 斤, 比"吉梗 60 号"分别增 产 19.1%和 19.9%。并且株型收敛、杆强、 抗病性强。大豆所用r射线照射"五顶珠× 荆山朴"的 F_2 种子, 育成的"黑农 16 号"品 种,早熟、高产、品质好而且有耐阴特性。 高产早熟、质佳、耐贮的"9号白菜",也是 照射"科二白菜×肥城花心"的杂交后代选出 的。

(二)扩大辐射后代的群体是辐射育种 成功的关键之一。

辐射后代的变异率虽高, 但有益变异却 较低。后代群体太小,一般很难选出理想的 突变体。早熟突变是辐射诱变中容易获得的 变异,如合江地区农科所在大豆辐射育种中 查明,早熟突变率为4.36%。但早熟的出现 往往带有细弱、矮小、低产等不良性状而失 去直接利用的价值。因此要以早熟高产为主 要育种目标时, 就应该扩大后代群体。如果 按 M₁ 代有存活 50%, M₂ 代早熟 突 变 率 为 4.16%, 有益突变率为 23.9%, 这样要获得 一株有益的早熟突变 Mo 必须照 射 200 粒 大 豆种子,从育种的实际需要出发,只少要有 5~10 株早熟有益变异,才能筛选出早熟高 产的品种。原子能利用研究室在小麦的辐射 育种 M₂代的入选率一般为 0.1~0.2%,从我 省多数育种单位的实践来看,每个处理 M2代 的群体一般不应少于 2000 个单株。

(三) 辐射与不同理化因素相结合是降

低辐射损伤、提高变异率的重要手段。

近几年来省农科院原子能利用研究室, 松花江地区水稻试验站和合江水稻所等单 位,把电离辐射(r射线、x射线、中子)与 一些物理因素(微波、激光、紫外线等)和 化学因素 (诱变剂、生长刺激素、化学防护 剂)等结合起来进行处理,获得了良好的诱 变结果。不少试验表明, 电离辐射照射种子 后,再经微波处理明显地降低了辐射损伤。 如 1975 年原子能利用研究室用中子加微波 在三个玉米品种上做了9项复合处理试验, 其出苗率中子加微波的比不 加 微 波 的 要 高 10~20%。小麦试验也得到了类似的结果。 辐射与化学诱变剂复合处理种子, 在诱变效 界上有积加性。如原子能利用研究室在小麦 的试验上表明, r 射线加秋水仙碱的处理与 秋水仙碱处理相比, 总突变率的 φ² 在 20.518 ~34.772 之间,矮杆突变的 a² 在 15.636~ 58.338 之间,差异显著。用复合处理的方法, 已选育出了一些优良品系, 如原子能利用研 究室用r射线加激光处理小麦种子选出了较 抗根腐病的"2108"突变系,处理高粱种子选 出了高产早熟的恢复系"龙辐忻13"。松花 江水稻试验站用 r 射线加微波处理种子, 选 出了早熟高产抗病的突变系"咸南 24r+v"。

三、辐射育种今后应深入 开展的几项工作

- 1. 通过电离辐射或与其他理化因素相结合处理种子、植株、花器等诱发突变,选出比当家品种早熟 7~10 天,增产 10%以上的抗病、优质的新品种。尤其在提早晚熟高产品种的成熟期上充分发挥辐射的独特作用,为我省粮食的稳产高产贡献力量。在品质育种上要着重利用辐射等手段,提高谷类作物,豆类作物的蛋白质含量和小麦、玉米、高粱的赖氨酸、色氨酸含量以及大豆的含油量。
- 2. 应用电离辐射或结合其他理化因素处理优良的杂交组合的种子、植株、花器等创

造作物的雄性不育系,高产二环系和无融合 生殖系,探讨利用杂种优势或稳定杂种优势 的途径和方法。

- 3. 为了提高引变效率,有效地利用突变、加快育种速度和控制变异方向等应深入研究扩大变异谱、提高变异率的引变方法,改进育种程序,探讨早熟、高产等主要性状的突变性质和遗传规律,重要农艺性状最高出现频率与世代的关系,有益变异的筛选鉴定方法以及辐射细胞学方面的规律。
 - 4. 把辐射与远缘杂交结合起来。一则用

以克服远缘杂交的不亲和性,另一则将辐射引起的染色体易位通过分离重组把它固定下来,形成各种有实用价值的置换系,进而选出具有宝贵特性的新类型。同时要着手研究"微观照射"的问题,如利用组织培养照射生长点的某一部份细胞;照射花粉母细胞某一特定的分裂时期;利用微束激光照射细胞的某一部份;利用放射性同位素标记选定的氨基酸、碱基类似物等,把它们作为遗传物质的内照射源,使之产生变异,为控制变异方向创造条件。

大豆杂种第一代光合速率优势的研究

谭克辉 戴云玲 储钟稀 (中国科学院植物所) 杜 维 广 (黑龙江省农科院大豆所)

本试验研究大豆不同成熟期类型亲本组合,F₁ 代光合速率的优势。其目的是进一步明确第一代光合速率优势情况,为开展 F₁ 代优势与其它各世代间的关系打下初步基础;为利用单倍体育种或其它育种途径能否在F₁ 代稳定光合速率提供依据。

材料与方法

本试验所用的材料是 1976 年本院大豆 所和生物室的杂交组合共 10 个。其材料按生 育期分类为早熟×中晚熟 3 个组合、早熟×早熟 1 个组合、中晚熟×中晚熟 3 个组合、晚熟×晚熟 3 个组合(表一)。1977 年将试验 材料种在大豆所育种地里。70 厘米行距,10 厘米株距,4米行长。田间管理是每垧翻前 施 1000 斤过磷酸钙,春天镇压一次,播前灌 水,三铲三晌。结合踰地追肥两次,6 月上 旬和下旬分别亩追尿素 30 斤和 20 斤。7 月中旬打一次乐果防治蚜虫。

光合速率测定:用 QGD-07 型红外线二氧化碳分析仪,在饱和光照和合适流量的条

件下,进行田间测定。在盛花期测单株主茎第6片复叶的中间小叶,结荚期测从顶部向下数第3~4片复叶中间小叶(每叶均剪成约为25平方厘米)。同一组合亲本与F1代交叉进行测定,各测5片叶取其平均值,并重复两次。光合速率按生育期进行分析,每一期取两次测定数的平均值。将光合速率测定数值,用下列公式进行杂种优势的估计;

1. 与亲本平均对比优势指数

$$\overline{F}_{MP} \times 100 \overline{F} = 杂种第一代平均值$$

MP=两亲本平均值

2. 与较高亲本对比优势指数

$$\frac{\overline{F}}{Ph} \times 100$$
 $\overline{Ph} = 较高亲本的平均值$

3. 优势率

$$\frac{\widetilde{F} - MP}{MP} \times 100$$

4. 真正杂种优势

$$\frac{\overline{F} - \overline{Ph}}{\overline{Ph}} \times 100$$